首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this study, an experimental investigation is performed to observe the electromechanical response of CB (carbon black)/Acrylonitrile butadiene styrene (ABS) additive manufactured composite under quasi-static (tensile, shear, and mode-I fracture) and dynamic (mode-I fracture) loading conditions for the potential damage sensing applications. Dog bone tensile, double v-notch shear, and single edge notch bending (SENB) specimen printed with three different configurations (0°/90°, +45°/-45°, and 0°) are considered for the quasi-static condition. A modified split Hopkinson pressure bar along with high-speed video camera is used for dynamic fracture experiments. Four-point probe technique coupled with a high-resolution data acquisition system is employed to obtain the real-time electrical response. In the case of tensile loading, +45°/-45° printed specimens show a nonlinear change of electrical resistance due to unique failure mode. Under the shear loading, electrical resistance remains unchanged during the elastic deformation. After the damage evolution, +45°/-45° printed specimens exhibit a higher rate of change in electrical resistance due to alignment of the filaments along the maximum principle shear stress direction. For both static and dynamic fracture loading, a minimal change of electrical resistance is observed before crack initiation. However, after the crack initiation, a sharp change of electrical resistance for 0°/90° printed specimens indicates a faster crack propagation as compared to the +45°/-45° printed specimens.  相似文献   

3.
Graft interpenetrating polymer networks (graft-IPNs) of polyurethane (PU) and the diglycidyl ether of bisphenol A (epoxy) were prepared by first grafting excess PU prepolymer to the epoxy and then simultaneously polymerizing the PU prepolymer and epoxy. The fracture properties, at high shear rate (e.g., impact) and low shear rate (e.g., pseudostatic tensile fracture energy measurement) of these graft-IPNs exhibit opposite behavior. Although dispersed rubber particles can enhance the Izod impact strength, toughening of the matrix of graft-IPNs was found to be the main contribution. In contrast, it was found that a heterogeneous morphology with suitably dispersed rubber domains of appropriate size as well as the toughness of the matrix are requirements for effectively increasing the fracture energy at low shear rate. A reinitiating crack in the plastic matrix is proposed as the main toughening mechanism and can be invoked to interpret the fracture behavior at high and low shear rates of the graft-IPNs.  相似文献   

4.
In order to explore the role of multi-walled carbon nanotubes (MWCNTs) on the fracture behavior of epoxy-based nanocomposites, fracture tests were conducted under the combined out-of-plane shear and tensile loading. Epoxy resin LY-5052 together with MWCNT contents of 0.1, 0.5 and 1.0 wt% were used to produce nanocomposite specimens. The results showed that increasing the contribution of out-of-plane shear from pure mode I towards pure mode III enhanced fracture toughness for both pure epoxy and nanocomposites. Additionally, it was found that in both loading conditions of pure mode III and mixed mode I/III, increasing MWCNT content up to 1.0 wt% enhanced fracture toughness with an ascending trend. The mechanisms involved in the fracture behavior of polymer-based nanocomposites were also studied in detail using the photographs taken from the fracture surfaces by scanning electron microscopy.  相似文献   

5.
Compression, tensile and mixed compression/shear tests were performed on PA66 by using a universal material testing machine in order to identify the experimental yield loci of PA66. For the mixed compression/shear tests, instead of using a complex loading device, SCS (shear-compression specimens) were used to generate the additional shear stresses. Then, the mechanical behavior of materials under complex stress states can be obtained for further analysis. Results show that the experimental yield loci of PA66 obtained by the test method proposed in the present paper agree well with the theoretical model based on three stresses invariant, which indicates the reliability of the test method.  相似文献   

6.
The mechanical responses of high‐density polyethylene (HDPE), polypropylene (PP) and polyamide 6 (PA 6) were experimentally investigated for a wide range of stress states and strain rates. This was accomplished by testing numerous specimens with different geometries. The uniaxial compression of cylindrical unnotched specimens and the uniaxial tensile behaviour of dumbbell specimens at different strain rates, was determined. A series of biaxial loading tests (combined shear and tension/compression, pure shear, pure tension/compression) using a designed Arcan testing apparatus were also performed. Flat and cylindrical notched specimens with different curvature radii were additionally tested in order to explore a wider range of stress states. The Drucker‐Prager yield criterion was calibrated with a set of experimental data, for which analytical formulae for stresses are available, and then applied to predict the deformation behaviour under different stress states, prior to strain localization. The results of the numerical simulations show that the Drucker‐Prager model can capture the initial elastic range and the post‐elastic response very satisfactorily. For triaxial and biaxial stress states there is a good agreement, however some load‐displacement responses are only satisfactorily described. Deviations observed in the predicted and experimental results are very likely attributed to the third invariant stress tensor, which was not explored in the model calibration. The evolution of stress triaxiality and Lode angle parameters with equivalent plastic strain were extracted and analysed for several specimens. The results show a plastic yielding behaviour sensitive to the stress state, which can be attributed to different combinations of stress triaxialities and Lode angle parameters.  相似文献   

7.
Graphene oxide (GO)/epoxy composites cured by aliphatic dibasic acids have been prepared. The influences of structure of aliphatic dibasic acid and loading of GO on curing process and mechanical properties of epoxy composites were studied. The results show that the reaction activities, gel time of corresponding epoxy-acid system and tensile strength of the formed epoxy resins decrease with the increase of the chain length of aliphatic dibasic acids. Both fracture toughness (>1.96 MPa⋅m1/2) and elongations at break (>6%) increase with the increase of the chain length of aliphatic dibasic acids. The introduction of GO is helpful to increase the mechanical properties and the gas transmission coefficient of GO/epoxy composites. A maximum of tensile strength and elongations at break were obtained when the loading of GO is 0.6 wt%. The gas transmission coefficient of GO/epoxy composite increases with the increase of GO loading. The excellent mechanical properties and gas leakage resistance coefficient of the formed epoxy composites provides potential application in many fields where conventional brittle epoxy resins are inapplicable.  相似文献   

8.
In this paper, axial and radial compression tests of carbon fiber/epoxy filament wound shape memory polymer (SMP) composite tubes were carried out to investigate the corresponding mechanical response. Carbon fibers impregnated with epoxy resin matrix were wound with ±45° layers. The effects of temperature, compression times, defect hole area, shape, and distribution on the mechanical properties of composite tubes were studied and analyzed, respectively. Meanwhile, the mechanical model of stress distribution about the defect hole, under axial compression loading, was established via using the method of complex function. Furthermore, the failure factors of specimens were analyzed. As a result, the defect with sharp angle would result in lower buckling load and Young's modulus. In addition, the failure area, where the delamination of materials, was predominantly located in the middle of specimen. The more times of compression to failure would result in the lower buckling load and Young's modulus of specimens, and the relationship was mainly in form of a specific power function. According to Hashin failure criteria, the effect of axial compression times on buckling load and equivalent modulus was investigated.  相似文献   

9.
The improvement of mechanical properties and toughness of nanoparticles for epoxy composites was mostly dependent on the disperse state of nanoparticles in epoxy matrices. When the content of nanoparticles was higher than a threshold value, it was easy to aggregate and then affect the improvement effect. Pickering emulsion was prepared using SiO2 nanoparticles as emulsifier and functional monomer as oil phase. The influence of Pickering emulsion on the curing process was investigated. The effect of Pickering emulsion on the mechanical properties, toughness, and glass transition temperature (Tg) was studied. Impact and tensile fracture surface were observed by scanning electron microscopy (SEM). Results from differential scanning calorimeter (DSC), tensile, impact, and fracture toughness tests are provided. The results indicated that the introduction of Pickering emulsion can eliminate the residual stress and accelerate curing reaction. Epoxy composites were capable of increasing tensile strength by up to 29.9%, impact strength of three‐fold, fracture toughness of 35%, and Tg of 20.7°C in comparison with the reference sample. SEM images showed that SiO2 nanoparticles exhibit a good dispersion in epoxy matrix. The increases in mechanical properties, toughness, and Tg of epoxy composites were attributed to the “Second Phase Toughness” mechanism.  相似文献   

10.
贾玉玺 《高分子科学》2014,32(6):703-710
A constitutive model is constructed to consider the resin matrix post-yield softening and progressive hardening behaviors. A user-defined material mechanical behavior(UMAT) subroutine is created, then the non-linear three-dimensional finite element analysis on the tensile processes of multi-fiber composites is conducted. The approximate 45° shear bands emanating from the matrix crack tip are found, being coincided with the experimental observations. The shear stress on the adjacent intact fiber/matrix interface is strongly influenced by the shear band and thus the stress concentration factor(SCF) changes obviously in the adjacent fibers. The distinct stress redistribution in the adjacent intact fibers implies the significant effect of the shear bands on the progressive fiber fracture initiation. As the inter-fiber spacing increases, the peak value of the SCF in the adjacent intact fiber decreases, whereas the overload zone becomes wider. The research has provided a helpful tool to evaluate the failure of fiber composites and optimize the composite performance through the proper selection of resin matrix properties and fiber volume fraction.  相似文献   

11.
To relate the mechanical responses of hard–soft copolymer systems with their microstructures, a coarse-grained molecular dynamics approach is employed, and mechanical properties of both hard and soft domains are calculated. We first investigate the enhancement mechanism of hard domains under tensile and shear loading conditions with pressure. The energy factor that denotes the interaction between hard beads dominates the microphase separation and morphology. Our numerical experiments show that pressure is the most crucial factor in shear-under-pressure tests, with larger pressure leading to higher shearing resistance of the copolymers. The viscoelastic behaviors of hard–soft copolymers are computed from the stress autocorrelation function. The stress relaxation indicates that the soft matrix is in a rubbery state at room temperature while hard domains are “glass-like” and can be viewed as elastic solids in a macroscale model. In addition, local elastic constants of hard domains are computed using the stress–strain fluctuation method with purely local stress and local strain. Those results can be used as inputs for macroscale models for copolymers and can provide guidelines for designing polymeric materials. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1552–1566  相似文献   

12.
The present work aims to investigate the local deformation mechanisms around a yarn in an eco-composite. Different hemp yarn orientations and two types of epoxy resin were tested. Full-field measurements were realised with the digital image correlation technique on specific single yarn composites, either on the face of the specimens, or on the edge. The tensile tests were performed under an optical microscope to give sufficient precision, and a numerical model was developed. The experimental results showed high heterogeneities in strain fields which increase with the applied stress level. The comparison with the underlying microstructure and the numerical model enabled us to study the influence of the yarn on the mechanical behaviour. The local constitutive behaviour of the different constituents of the specimens could be approached by these analyses. These results constitute a complete and original database on hemp/epoxy interface mechanical behaviour.  相似文献   

13.
Hyperbranched poly(ester‐silane)s (HPE‐Si, including HPE‐Si4 and HPE‐Si8) were synthesized for glass bead filled epoxy resins. The grafting reaction and the degree of grafting of HPE‐Si onto the surface of glass beads were characterized by Fourier transform infrared photoacoustic spectroscopy (FT‐IR‐PAS) and thermogravimetric analysis (TGA) measurements. The degree of grafting was calculated to be in the range 1.0–4.2% for different HPE‐Si treatments. The tensile strength and modulus of glass bead filled epoxy resins were found to increase with increasing filler content. Moreover, HPE‐Si4 series have the highest tensile strength and modulus at the same glass bead size and volume fraction in the composites compared with HPE‐Si8 series. The fracture toughness (K1c) of specimens with different glass bead sizes (4.8 and 2.0 μm) has the same trend that changes with the filler content and the modification of the surface of glass beads. The investigation of the toughening mechanism using Irwin's model through the yield stress measurements suggest that the toughening mechanism for small glass bead filled resins does not involve matrix plasticity, whereas the toughening mechanism involving matrix shear banding for large glass bead filled resins with higher filler content (up to 10 wt%) was proposed. The morphology of the filled resins studied by scanning electron microscopy (SEM) showed that the interface compatibility between the glass beads and epoxy matrix was greatly improved by the treatment with HPE‐Si. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The aim of this paper is to study and compare the mechanical behavior of woven basalt and woven glass epoxy composites at high strain rates, in order to assess the possibility of replacing glass fiber composites with basalt fiber composites for aircraft secondary structures, such as radomes, fairings, wing tips, etc. Both composites were produced using the same epoxy matrix, the same manufacturing technique, and with comparable densities, fiber volume fractions, and static stiffnesses. Dynamic tensile and shear experiments were performed using a split Hopkinson tension bar, in addition to reference quasi-static experiments to compare both material behaviors over a wide range of strain rates. Normalized results with respect to the material density and fiber volume fraction showed that basalt epoxy composite had higher elastic stiffness, ultimate tensile strength, ultimate tensile strain, and absorbed energy in tension compared to glass epoxy composite. This suggests a promising potential in replacing glass fibers composites with basalt fiber composites in aircraft secondary structures and, more generally, components prone to impact. However, for the basalt epoxy composite, improvements in the fiber-matrix adhesion and in the manufacturing technique are still required to enhance their shear properties compared to glass fiber composites, and fully exploit the potential of basalt epoxy composites in aeronautical applications.  相似文献   

15.
Modification of epoxy resin using reactive liquid (ATBN) rubber   总被引:5,自引:0,他引:5  
Epoxy resins are widely utilised as high performance thermosetting resins for many industrial applications but unfortunately some are characterised by a relatively low toughness. In this respect, many efforts have been made to improve the toughness of cured epoxy resins by the introduction of rigid particles, reactive rubbers, interpenetrating polymer networks and engineering thermoplastics within the matrix.In the present work liquid amine-terminated butadiene acrylonitrile (ATBN) copolymers containing 16% acrylonitrile is added at different contents to improve the toughness of diglycidyl ether of bisphenol A epoxy resin using polyaminoimidazoline as a curing agent. The chemical reactions suspected to take place during the modification of the epoxy resin were monitored and evidenced using a Fourier transform infrared. The glass transition temperature (Tg) was measured using a differential scanning calorimeter. The mechanical behaviour of the modified epoxy resin was evaluated in terms of Izod impact strength (IS), critical stress intensity factor, and tensile properties at different modifier contents. A scanning electron microscope (SEM) was used to elucidate the mechanisms of deformation and toughening in addition to other morphological features. Finally, the adhesive properties of the modified epoxy resin were measured in terms of tensile shear strength (TSS).When modifying epoxy resin with liquid rubber (ATBN), all reactivity characteristics (gel time and temperature, cure time and exotherm peak) decreased. The infrared analysis evidenced the occurrence of a chemical reaction between the two components. Addition of ATBN led to a decrease in either the glass transition temperature and stress at break accompanied with an increase in elongation at break and the appearance of some yielding. As expected, the tensile modulus decreased slightly from 1.85 to about 1.34 GPa with increasing ATBN content; whereas a 3-fold increase in Izod IS was obtained by just adding 12.5 phr ATBN compared to the unfilled resin. It is obvious that upon addition of ATBN, the Izod IS increased drastically from 0.85 to 2.86 kJ/m2 and from 4.19 to 14.26 kJ/m2 for notched and unnotched specimens respectively while KIC varies from 0.91 to 1.49 MPa m1/2 (1.5-fold increase). Concerning the adhesive properties, the TSS increased from 9.14 to 15.96 MPa just by adding 5 phr ATBN. Finally SEM analysis results suggest rubber particles cavitation and localised plastic shear yielding induced by the presence of the dispersed rubber particles within the epoxy matrix as the prevailing toughening mechanism.  相似文献   

16.
Herein,we designed a core-shell structured bottlebrush copolymer (BBP),which is composed of rubbery poly(butyl acrylate) (PBA)core and an epoxy miscible/reactive poly(glycidyl methacrylate) (PGMA) shell,as an epoxy toughening agent.The PGMA shell allows BBP to be uniformly dispersed within the epoxy matrix and to react with the epoxy groups,while the rubbery PBA block simultaneously induced nanocavitation effect,leading to improvement of mechanical properties of the epoxy resin.The mechanical properties were measured by the adhesion performance test,and the tensile and fracture test using universal testing machine.When BBP additives were added to the epoxy resin,a significant improvement in the adhesion strength (2-fold increase) and fracture toughness (2-fold increase in Klc and 5-fold increase in Glc)compared to the neat epoxy was observed.In contrast,linear additives exhibited a decrease in adhesion strength and no improvement of fracture toughness over the neat epoxy.Such a difference in mechanical performance was investigated by comparing the morphologies and fracture surfaces of the epoxy resins containing linear and BBP additives,confirming that the nanocavitation effect and void formation play a key role in strengthening the BBP-modified epoxy resins.  相似文献   

17.
The fracture behaviour of a number of short- and long-GF/polypropylene-based materials, long-GF reinforced nylon-6,6 and CF/epoxy composites was assessed using an instrumented impact tester. A meaningful assessment of the mechanical response of the specimens to the instrumented loading was shown to depend on the stability of the specimen support system and hence specimen resonance. The fracture properties (Kc and Gc) were in general independent of specimen dimensions and moulding flaws in the case of unfilled polypropylene. Fibre-containing systems demonstrated significant variation in the properties as a function of fibre distribution. Preparation of the test-pieces had a marked effect, particularly for specimens containing a high concentration of long fibres. An equivalent notch depth for specimens containing a machined notch and dispersed fibres is defined.  相似文献   

18.
The fracture behavior of a core-shell rubber (CSR) modified epoxy is investigated using both fracture mechanics and microscopy tools. The CSR-modified epoxy is found to be toughened via numerous line-array cavitations of the CSR particles, followed by plastic flow of the epoxy matrix. The toughening effect via the above craze-like damage process is found to be as effective as that of the well-known widespread rubber cavitation/matrix shear yielding mechanisms. The conditions for triggering the craze-like damage appear to be both stress state and rubber concentration dependent. The type of rubber tougheners utilized also plays a critical role in triggering this rather unusual craze-like damage in epoxy systems. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
结合介观动力学方法和三维弹簧格子模型,研究了嵌段共聚物相容剂对相容性较差的聚合物二元共混体系力学性能的影响.在适当范围内不断增加嵌段共聚物相容剂的用量,研究了相容剂含量对体系杨氏模数及拉伸强度的影响,同时也对不同体系材料的破碎位点进行了分析.结果表明,未加入相容剂的二元共混体系在拉伸模拟中表现出较低的拉伸强度,而适量添加相容剂可以显著提升材料的拉伸强度,随着相容剂含量的增加,共混体系的破碎位点会发生转移并最终改善材料的整体性能.而相容剂的加入对体系杨氏模数的影响较小.该连续模拟方法为关联聚合物复合体系的微观结构和宏观力学性能提供了一条高效的途径.  相似文献   

20.
Studies on PAN-based carbon fibers irradiated by Ar+ ion beams   总被引:2,自引:0,他引:2  
In this work, the effects of Ar+ ion beam irradiation on carbon fibers were studied using tensile and surface analytical techniques. The single-fiber pull-out test was executed in order to characterize the fiber/epoxy matrix interfacial adhesion. The Ar+ ion beam was irradiated using an ion-assisted reaction (IAR) method in reactive gas conditions under an oxygen environment with 1 x 10(16) ions/cm(2) Ar+ ion dose (ID), 6 sccm blown gas flow rate, and different ion beam energy intensities. From the experimental results, both the interfacial shear strength (IFSS) and fracture toughness (Gi) were found to increase with increasing Ar+ ion irradiation intensity. This was probably due to the fact that Ar+ ion beam irradiation on carbon fibers was effective in altering their surface physical chemistry and structural morphology, resulting in improved interfacial adhesion in the fiber/epoxy matrix. The reliability of single-fiber pull-out test data could be improved by statistical analysis using the Weibull distribution, which served to predict the variation of the mechanical interfacial properties in a composite system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号