首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon/glass hybrid composite (CGHC) laminates are some of the most promising composites for lightweight applications. Sometimes these laminates are used in warm environment, such as aircraft frame structures, and this may affect their performance. In order to investigate this issue, the present research aims to study the effect of temperatures on the impact behavior and pseudo-ductile behaviour of CGHC in presence of different types of thermosets “epoxy” and thermoplastic “acrylic poly-methyl methacrylate-PMMA”. The experiments were started with making of CGHC laminates from different stacking sequences of unidirectional carbon and woven glass fibre layers, using a vacuum-assisted resin transfer method followed by curing treatment. In addition to CGHC laminates, four other neat batches (Carbon/epoxy, Carbon/PMMA, Glass/epoxy, Glass/PMMA) were prepared for comparison. The low velocity impact behaviour of the fabricated panels was evaluated at high temperatures (60 °C and 80 °C) according to ISO 6603-2 standard, using drop tower, while pseudo-ductile behaviour and ductility index (DI) of the specimens were estimated based on the measured total energy and elastic energy. Also, the low-velocity impact response was modeled mathematically based on a modified energy-balance model to predict the absorbed energies. Finally, the failure mechanisms were examined using optical microscope to determine the influence of these damage growth on DI of the composites under different temperatures. The results showed that the impact energy response of both hybrid composites i.e. epoxy and PMMA was stable even as the temperature rose, however, carbon/glass/PMMA exhibited better performance compared with carbon/glass/epoxy with an increase in impact energy response estimated at 50% (25 °C) and 53% (80 °C). Also, the pseudo-ductile phenomenon was strongly evident, which facilitates the predictablility of failure.  相似文献   

2.
This paper presents a method for the non-destructive inspection and quantitative comparison of low-velocity impact damage in thermoplastic and thermoset composites. X-ray microscope (XRM) computed tomography is used to analyse the three-dimensional internal damage in carbon fibre/poly-ether-ether-ketone (AS4/PEEK) and carbon fibre/epoxy (CCF300/Epoxy) laminates. With the materials and testing conditions used, it was shown that thermoplastic composites have better interlaminar and intralaminar properties, and the following quantitative conclusions were drawn. Under the same impact energy, the maximum contact force of AS4/PEEK laminate was approximately twice that of CCF300/Epoxy laminate. Dissection of the reconstructed XRM volume along a characteristic slicing surface showed that AS4/PEEK had less internal damage than CCF300/epoxy. When the impact energy was 15 J, the XRM results showed that the sum of delamination areas between each ply in AS4/PEEK was only 9% of that in CCF300/Epoxy, whereas the ultrasonic C-scan results showed that the total delamination area of AS4/PEEK was 54.78% of that of CCF300/Epoxy.  相似文献   

3.
The effect of nanoclay addition in Glass Fiber Reinforced Epoxy (GFRE) composites on impact response was studied. The epoxy nanocomposite matrix with 1.5 and 3.0 wt% loading of I.30E nanoclay was produced by high shear mixing. Hybrid GFRE nanoclay composite plates were manufactured by hand layup and hot pressing techniques using electrical grade-corrosion resistant (E-CR) glass fiber mats. The laminates were then subjected to low-velocity impact with energies between 10 and 50 J. Addition of nanoclay was found to improve peak load and stiffness of GFRE. Nanoclay loading of 1.5 wt% resulted in optimum properties, with 23% improvement in peak load and 11% increase in stiffness. A significant reduction in physical damage was also observed for hybrid nanocomposite samples as compared to GFRE. This was mainly attributed to transition in damage mechanism due to nanoclay addition. Clay agglomeration in samples with 3.0 wt% loading contributed towards limiting the improvement in impact resistance.  相似文献   

4.
The low velocity impact performance of domestic aramid fibre reinforced laminates is investigated experimentally and numerically. Laminates with different thicknesses are impacted by drop-weight test machine under different impact energies. The time histories of impact force are recorded and ultrasonic C-scan technology is used to inspect the internal damage of the laminates. Numerical simulation is conducted using finite element method (FEM), taking into account both intralaminar and interlaminar damage. The intralaminar damage model is based on the continuum damage mechanics (CDM) approach, which consists of the strain-based Hashin failure criteria and the exponential damage evolution law, and considers the nonlinear shear behaviour of the material. The interlaminar damage is simulated by interface elements with cohesive zone model. The numerical results show good agreements with the experiments, thus verifying the validity of the presented numerical model.  相似文献   

5.
The aim of this paper is to study and compare the mechanical behavior of woven basalt and woven glass epoxy composites at high strain rates, in order to assess the possibility of replacing glass fiber composites with basalt fiber composites for aircraft secondary structures, such as radomes, fairings, wing tips, etc. Both composites were produced using the same epoxy matrix, the same manufacturing technique, and with comparable densities, fiber volume fractions, and static stiffnesses. Dynamic tensile and shear experiments were performed using a split Hopkinson tension bar, in addition to reference quasi-static experiments to compare both material behaviors over a wide range of strain rates. Normalized results with respect to the material density and fiber volume fraction showed that basalt epoxy composite had higher elastic stiffness, ultimate tensile strength, ultimate tensile strain, and absorbed energy in tension compared to glass epoxy composite. This suggests a promising potential in replacing glass fibers composites with basalt fiber composites in aircraft secondary structures and, more generally, components prone to impact. However, for the basalt epoxy composite, improvements in the fiber-matrix adhesion and in the manufacturing technique are still required to enhance their shear properties compared to glass fiber composites, and fully exploit the potential of basalt epoxy composites in aeronautical applications.  相似文献   

6.
This study explores the effects of 3-glycidoxypropyltrimethoxysilane (3-GPTS) modified Na-montmorillonite (Na-Mt) nanoclay addition on mechanical response of unidirectional basalt fiber (UD-BF)/epoxy composite laminates under tensile, flexural and compressive loadings. Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and simultaneous thermal analysis (STA) data confirmed the reaction mechanism between the silane compound and Mt. It was demonstrated that addition of 5 wt % 3-GPTS/Mt resulted in 28%, 11% and 35% increase in flexural, tensile and compressive strengths. Scanning electron microscopy (SEM) clarified the improvement in the adhesion between the basalt fibers and matrix in the case of Mt-enhanced epoxy specimens. Also, a theoretical route based on a Euler-Bernoulli beam-based approach was employed to estimate the compressive properties of the composites. The results demonstrated good agreement between theoretical and experimental approaches. Totally, the results of the study show that matrix modification is an effective strategy to improve the mechanical behavior of fibrous composites.  相似文献   

7.
This study seeks to investigate how the enhanced properties of the nanoclay E‐glass/epoxy composite can withstand the combined effects of ultraviolet radiation, moisture, and rain. The montmorillonite nanoclay's affinity to moisture compounded the moisture absorption ability of the nanoclay E‐glass/epoxy composites. The moisture in the polymer structure caused delamination, debonding of the fibers/matrix, microvoids, and fiber pullouts. The high clay content (2 wt %), therefore, recorded the highest rate of degradation of 15% in flexural stress for the first 20 days, compared to about 8 and 6% loss for the unmodified (0 wt %) and 1 wt % composites respectively. However, as the aging progressed beyond 20 days, the rate of degradation of the nanoclay E‐glass/epoxy composites laminates was steady at 10 and 18%, respectively, for the 1 and 2 wt %, while that of the unmodified polymer continued to degrade progressively. On the contrary, the viscoelastic properties of the nanoclay E‐glass/epoxy composites continued to deteriorate at a faster rate than the unmodified polymer composite. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1024–1029  相似文献   

8.
This research aims to develop superhydrophilic fiberglass/epoxy nanocomposite (FGEC) laminates with high mechanical, thermal, and impact properties. In order to achieve this goal, functionalized graphene (FGA) was used as a nanofiller material to improve the mechanical, impact, and thermal behaviors of FGEC, while the plasma treatment helped to form the oxidized polar functional groups (C9O groups and C–O groups) on the fabricated FGEC laminates, thus modifying their hydrophilic behavior. The experiments were started with production of FGEC laminates by mixing FGA (0.05-0.4 wt%) with epoxy resin in presence of Acetone (to obtain better dispersion), followed by preparation of FGEC laminates using vacuum-assisted resin transfer and curing processes. Afterwards, the surfaces of the fabricated FGEC laminates were treated by air plasma at 13Pa and 30W for different treatment times in the range 5–30 min. Mechanical and impact properties of the untreated and treated laminates were investigated according to ASTM-D7025 and ISO 6603-2 standards, respectively. Also, thermal behavior of the laminates was investigated using a thermogravimetric analysis, while a high resolution camera was used to record and calculate a contact angle of the untreated and treated laminates. SEM and Optical Microscope was used to observe dispersion of FGA, microstructure, impact mechanism, and surface morphology of the fabricated FGEC matrix. Meanwhile, XPS was used to evaluate changes in the surface structures of the untreated and treated samples. The results showed that 0.35 wt% of FGA and 15-min exposure to plasma treatment were enough to improve tensile strength and impact energy of the laminates by 18% and 70%, respectively, and to decrease the water contact angle from 67° to 14°.  相似文献   

9.
Water barrier properties and tribological performance (hardness and wear behavior) of new hybrid nanocomposites under dry and wet conditions were investigated. The new fabricated hybrid nanocomposite laminates consist of epoxy reinforced with woven and nonwoven tissue glass fibers and two different types of nanoparticles, silica (SiO2) and carbon black nanoparticles (C). These nanoparticles were incorporated into epoxy resin as a single nanoparticle (either SiO2 or C) or combining SiO2 and C nanoparticles simultaneously with different weight fractions. The results showed that addition of carbon nanoparticles with 0.5 and 1 wt% resulted in maximum reduction in water uptake by 28.55% and 21.66%, respectively, as compared with neat glass fiber reinforced epoxy composites. Addition of all studied types and contents of nanoparticles improves hardness in dry and wet conditions over unfilled fiber composites. Under dry conditions, maximum reduction of 47.26% in weight loss was obtained with specimens containing 1 wt% carbon nanoparticles; however, in wet conditions, weight loss was reduced by 17.525% for specimens containing 0.5 wt% carbon nanoparticles as compared with unfilled fiber composites. Diffusion coefficients for different types of the hybrid nanocomposites were computed using Fickian and Langmuir models of diffusion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Electrical conductivity and elongation at break of epoxy filled with electroconductive carbon black, graphite or with silver-coated basalt particles or fibres were investigated in this paper. Percolation concentrations were determined to be 14 vol% for epoxy/carbon black composites, 22 vol% for epoxy/graphite composites, 28-29 vol% for both epoxy/silver-coated basalt particles and fibres. The steepest increase in electrical conductivity and the most pronounced decrease in elongation at break occurs at similar filler concentration range for all investigated systems. A good correlation between phenomenological model, introduced in [J. Mater. Sci. Lett. 18 (1998) 1457] and experimental data for all investigated systems was observed.  相似文献   

11.
Flax-PP based thermally bonded roving (TBR) has a unique structure where the flax fibres remain twist-free and fully aligned along the roving axis. The present study describes an experimental investigation on the low velocity impact (LVI) behaviour of the TBR based woven fabric composites and compares the same with plain woven glass fabric reinforced PP composites (GRPC). Two different fabric architectures namely plain woven (PW) and unidirectional (UD) are fabricated using flax/PP based TBR. These TBR based woven fabrics and the glass fabric/PP sheets are consolidated in a compression moulding machine and the resultant composite-laminates are tested for their LVI behaviour. The impact test results revealed that the glass/PP composites absorb more energy and exhibit a higher peak load than both TBR based PW and UD fabric composites. However, the specific load and energy of all flax/PP composites are higher than the glass/PP composite. The damage tolerance of all composite laminates are evaluated by comparing their flexural strength before and after the impact. It is observed that the proportionate loss in flexural strength due to impact thrust is larger in case of glass/PP composites than all flax-PP composites.  相似文献   

12.
The glass fiber epoxy composites containing MWCNTs and Fe3O4 NPs were manufactured by composites liquid molding process. The microwave absorbing properties of single-layered and double-layered glass fiber/MWCNTs/epoxy and glass fiber/Fe3O4 NPs/epoxy composites were evaluated. The reflection loss(RL) were calculated by the measured complex permittivity and permeability using waveguide method by vector network analyzer. Based on the mechanism analysis and deficiency of single-layer absorber, the double-layered composites were fabricated by using matching layer and absorbing layer to enhance the microwave absorption performance, which can be modulated by tailoring the electromagnetic parameters and thicknesses of each layer. The optimized microwave absorbing properties of double-layered composites with minimum RL of −45.7 dB and full X-band effective absorption can be achieved when the total thickness of the matching layer and absorbing layer is 1.8 mm, which can be attributed to synergistic effect of improved impedance matching characteristic and superior microwave attenuation characteristic of the absorbing layer. The combined utilization of dielectric loss and magnetic loss absorbent and their double-layered structure design shows great design flexibility and diversity and can be a promising candidate for designing high performance microwave absorbing materials.  相似文献   

13.
In this study, the mechanical and thermal behavior of the steel particles (SP) fabricated epoxy-based composites were investigated. The purpose of using SP was to find out their suitability and compatibility to be used as low-cost fillers for epoxy-based composites. A special steel-cast metal mold was used to fabricate the composites via self-casting method. The effect of SP concentration (10, 20, 30 and 40 wt%) on various properties of the epoxy/SP composites was explored. Another sample was prepared using the optimum loading with a special treatment using heat and encapsulation of the SP. Mechanical properties of the composites were analyzed through tensile, flexural and impact testing. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to examine the structural and morphological properties. In addition, thermal properties of the composites were analyzed with the thermogravimetric analyzer (TGA). Results indicated that the addition of PS into epoxy improved both tensile and flexural strength up to 98.5% and 147.6%, respectively, compared to the neat epoxy (NE). The decomposition temperature was raised nearly 18 °C for adding 30 wt% SP which was the maximum among all other composites. Results showed that 30 wt% of SP was the optimum loading for the better properties of the composites. In addition, the preheat treatment of the particles and the encapsulation process established a better interaction between the epoxy and the particles which resulted in the superior performance of the composites compared to the other samples. Overall, the improved mechanical and thermal properties of the SP-fabricated epoxy composites indicate that the epoxy/SP composite is a good candidate for structural and high temperature applications.  相似文献   

14.
A study of the impact behaviour and the post-impact residual strength of fully biodegradable composites is presented in this work. To this end, low-velocity impact tests and compressive residual strength tests were carried out on flax/PLA laminates. The results were compared with carbon/epoxy laminates, showing some important advantages in terms of absorbed energy and normalized residual strength. The reason was attributed to different energy absorption mechanisms; the main failure mode in flax/PLA laminates is fibre failure while residual strength of carbon/epoxy laminates is dominated by delaminations.  相似文献   

15.
We present a continuing investigation of epoxies based on diglycidyl ether of bisphenol A cured with 2‐ethyl‐4‐methylimidazole in the presence of the nonionic surfactant Triton X‐100. Interest in this epoxy system is due partially to its potential application as a waterborne replacement for solvent‐cast epoxies in E‐glass‐laminated printed circuit boards. The surfactant additive could potentially alter the interfacial properties and durability of composite materials. Previous studies revealed that the viscoelastic behavior of the cured epoxy is altered when it serves as the matrix in a glass‐fiber‐reinforced composite. The additional constraining and coupling of the E‐glass fibers to the segmental motion of the epoxy matrix results in an apparent increased level of viscoelastic cooperativity. Current research has determined that the cooperativity of an epoxy/E‐glass composite is also sensitive to the surface chemistry of the glass fibers. Model epoxy/E‐glass composites were constructed in which the glass was pretreated with either 3‐aminopropyltriethoxysilane or 3‐glycidoxypropyltrimethoxysilane coupling agents. Dynamic mechanical analysis was then used to create master curves of the storage modulus in the frequency domain. The frequency response of the master curves and resulting cooperativity plots clearly varied with the surface pretreatment of the glass fibers. The surfactant had surprisingly little effect in the observed trends in the cooperativity of the composites. However, the changes in cooperativity due to the surface pretreatment of the glass were lessened when the samples were prepared from waterborne emulsions. Moisture‐uptake experiments were also performed on epoxy samples that were filled with spherical glass beads as well as multi‐ply laminated composites. No increases in the diffusion constant could be attributed to the surfactant. However, the surfactant did enhance the final equilibrium moisture‐uptake levels. These equilibrium moisture‐uptake levels were also sensitive to the surface pretreatment of the E‐glass. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2351–2365, 2000  相似文献   

16.
A new test method to directly characterize fiber-matrix interface properties under high rate of loading has been developed. A tensile Hopkinson bar with a modified incident bar is used to load a microdroplet test specimen. Numerical simulations were carried out to design the test specimen geometry and validate data reduction procedures for the dynamic interface experiments. Stress wave propagation in an S-2 Glass/Epoxy microdroplet specimen was studied with different droplet sizes (100 μm–200 μm) and fiber gage lengths (2 mm–6 mm). Simulation results indicate that dynamic equilibrium can be maintained up to a displacement rate of 10 m/s. Dynamic microdroplet experiments were conducted at a displacement rate of 1 m/s on S-2 glass/epoxy interface. Experimental results and post-failure inspection of the fiber matrix interface showed that the new test method is effective in measuring high rate interface properties of composites.  相似文献   

17.
Maleated styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MA) and epoxy monomer, individually or in combination, are used to toughen polyamide 6/glass fiber composites. The epoxy monomer enhanced interaction between polyamide 6 and glass fiber. SEBS-g-MA rubber is uniformly dispersed in polyamide 6 matrix caused by the preferred compatibilizing reaction between the anhydride group of rubber and the amine terminal group of polyamide 6. The addition of epoxy does not affect the fine dispersion of SEBS-g-MA. Polyamide 6/glass fiber binary composites are brittle. The addition of epoxy monomer alone does not change their brittle features. Similarly, in the absence of epoxy monomer, adding 20 wt % of SEBS-g-MA to polyamide 6/glass fiber composites does not greatly increase the tensile ductility. Only when both SEBS-g-MA and epoxy monomer are present in some combination, do the polyamide 6/glass fiber composites show prominent ductile characteristics, such as stress-whitening and necking. This synergistic effect of epoxy monomer and SEBS-g-MA also imparts higher notched impact strengths to the ternary composites. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1448–1458, 2007  相似文献   

18.
The present work investigated the effects of non-ionic surfactant treatment on the dispersibility, surface chemistry and structure of carbon nanotube (CNT) particles. Subsequently, the fracture experiments of as-prepared epoxy/CNT@X nanocomposites were carried out under quasi-static and dynamic loading conditions. By simply introducing the steric repulsive force between CNT@X filler and epoxy matrix, improved mode-I critical-stress-intensity factor (KIc) and dynamic crack initiation toughness (KIid) of the epoxy/CNT@X nanocomposite were simultaneously obtained without compromising other desired physical properties, such as electrical properties and electro-thermal behavior. In the case of SHPB impact loading, high-speed imaging along with digital-image-correlation (DIC) technology was utilized to determine dynamic fracture parameters. The results showed a notable reinforcement for the epoxy/CNT@X nanocomposite category, producing maximum increase of ~79% and ~153% in KIc and KIid values relative to epoxy/CNT nanocomposite at such maximum content of 1.0 wt%, respectively. The most delayed crack initiation time (59.9–68.4 μs) and slowest crack-tip velocity (229 ± 28 m/s) were also observed in the epoxy/CNT@X_1.0 case. These results may be explained by improved dispersibility and interfacial adhesion after surfactant treatment.  相似文献   

19.
This paper reports on the work carried out to evaluate the frequency dependent viscoelastic properties of epoxy/novolac compositons modified with a liquid reactive rubber and carbon filler. For epoxy systems modified with elastomer, three typical transitions were observed: the α-relaxation deeply related to the glass transition of epoxy, the β-transition of epoxy, and the glass transition of rubber appeared near to the β-relaxation of epoxy resin. Considering an Arrhenius equation, the activation energies of β-relaxation were estimated. In the region of glass transition and rubbery state the temperature dependence of the shift factor (αT) was determined through Williams-Landel-Ferry (WLF) equation.  相似文献   

20.
Epoxy composites containing particulate fillers‐fused silica, glass powder, and mineral silica were investigated to be used as substrate materials in electronic packaging application. The content of fillers were varied between 0 and 40 vol%. The effects of the fillers on the thermal properties—thermal stability, thermal expansion and dynamic mechanical properties of the epoxy composites were studied, and it was found that fused silica, glass powder, and mineral silica increase the thermal stability and dynamic thermal mechanical properties and reduce the coefficient of thermal expansion (CTE). The lowest CTE value was observed at a fused silica content of 40 vol% for the epoxy composites, which was traced to the effect of its nature of low intrinsic CTE value of the fillers. The mechanical properties of the epoxy composites were determined in both flexural and single‐edge notch (SEN‐T) fracture toughness properties. Highest flexural strength, stiffness, and toughness values were observed at fillers content of 40 vol% for all the filled epoxy composites. Scanning electron microscopy (SEM) micrograph showed poor filler–matrix interaction in glass powder filled epoxy composites at 40 vol%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号