首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
升温与等温法非模型动力学研究环氧树脂固化反应   总被引:2,自引:0,他引:2  
基于DSC数据,采用以Vyazovkin积分法为基础的升温法非模型动力学和等温法非模型动力学对双酚A型环氧树脂E51/4,4′-二氨基二苯基砜(DDS)体系及多官能度环氧树脂AG80/DDS体系的固化过程进行了研究,并结合玻璃化转变温度的变化和原位红外测试技术,对比分析了升温与等温条件下的固化反应规律.结果表明,与传统的模型拟合法相比,非模型动力学更适合定量预测树脂固化反应过程,并能为固化过程中反应机理变化的研究提供重要依据;等温法非模型动力学能够更好地预测两种树脂体系在不同恒温条件下的固化反应历程,并且升温法与等温法非模型动力学所得到的反应活化能-固化度之间的变化关系不同,表明不同温度条件下树脂的反应机理不同,这与升温和恒温条件下玻璃化效应及环氧官能团的变化规律相吻合.  相似文献   

2.
应用动态粘弹谱仪的环形剪切方法,在恒定的温度条件下,对环氧树脂的固化潜伏期、凝胶化时间和固化过程进行了分析测定.根据计算机处理的数据绘出样品粘度和剪切模量随时间变化的关系谱图,为研究环氧树脂的固化全过程提供了一种有效的表征方法.  相似文献   

3.
电子束作用下双酚A型环氧树脂体系的固化特征   总被引:1,自引:0,他引:1  
当前 ,先进树脂基复合材料基本上都是采用加热固化成型的 ,由于其工艺周期长 ,造成复合材料的制造成本较高 ,同时 ,热固化采用的固化剂和有机溶剂往往会对操作人员及环境造成危害 .为顺应复合材料低成本化和无公害化的发展趋势 ,树脂基复合材料的电子束辐射固化技术逐渐发展起来 .复合材料的电子束固化技术是在 2 0世纪 80年代初 ,由法国Aeropaticle的研究人员首先进行的[1] .近年来 ,美国、日本、加拿大及欧洲的许多国家都在积极从事于研究和利用此项技术 ,并且已经取得了可观的成果[2 ] .我国在这方面的研究工作也开始起步 .作…  相似文献   

4.
采用流变学的方法研究了环氧树脂代木搪塑模具在不同温度下的固化过程。 为了找到合适的测试条件,首先研究了应变和振荡频率对环氧树脂代木搪塑模具的测试结果的影响。 环氧树脂代木搪塑模具固化过程中,体系交联程度逐渐变大;在不同的固化阶段,固化程度的变化快慢不同,先缓慢增加,然后迅速增加,最后缓慢增加至平台值;储能模量和损耗模量的变化速度在不同阶段的变化与固化程度的变化相似,根据储能模量和损耗模量的最快增长速率与温度的关系得到体系的活化能约为27.2 kJ/mol;随着固化温度升高,环氧树脂代木搪塑模具固化完全所需的时间减少,同时环氧树脂的施工容留时间也相应地减少。  相似文献   

5.
A self-healing carbon/epoxy composite was fabricated with the incorporation of healing agent loaded core-shell nanofibers between carbon fiber fabric layers. The healing agents, consisting of two components, a low viscosity epoxy resin and its amine-based curing agent, were encapsulated in Styrene acrylonitrile (SAN) nanofibers via a coaxial electrospinning method. Transmission electron microscope (TEM), Fourier Transform Infrared (FTIR), and thermogravimetric analysis (TGA) results confirmed the successful encapsulation of both epoxy and curing agent in SAN nanofiber shells. TGA and the extraction method confirmed a high encapsulation yield (90% for the epoxy resin and 97% for the curing agent). Mechanical studies of the hybrid composite showed that embedding the fabricated core-shell nanofibers did not lead to a reduction in the mechanical properties of host composite, which was corroborated with statistical analysis. Mechanical evaluations and curing behavior studies both showed that incorporation of the aforementioned nanofibers between carbon layers can imbue the conventional carbon/epoxy composite with a self-healing ability, allowing it to repair itself to restore its mechanical properties for up to three cycles at room temperature in absent of any external driving force.  相似文献   

6.
用IR、DSC等分析方法研究了端2-噁唑啉聚环氧丙烷(活性聚醚)与环氧树脂的固化反应,对固化机理作了讨论。并考察了不同分子量活性聚醚对环氧树脂的增韧作用。结果表明,此活性聚醚对环氧树脂增韧效果明显,固化树脂综合性能较好。  相似文献   

7.
In this paper, a polyether-ether-ketone (PEEK)/epoxy composite was prepared by using PEEK microparticles as the reinforcement. The nonisothermal differential scanning calorimetry (DSC) test was used to evaluate the curing reaction of PEEK/epoxy resin system. The curing kinetics of this system were examined utilizing nonisothermal kinetic analyses (Kissinger and Ozawa), isoconversional methods (Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose) and an autocatalytic reaction model. During these analyses, the kinetic parameters and models were obtained, the curing behavior of PEEK/epoxy resin system under dynamic conditions was predicted. The results show that isoconversional methods can adequately interpret the curing behavior of PEEK/epoxy resin system and that the theoretical DSC curves calculated by the autocatalytic reaction model are in good agreement with experimental data. Furthermore, the tensile elongation at break, tensile strength, flexural strength, compression strength and compression modulus increased by 81.6%, 33.66%, 36.53%, 10.98% and 15.14%, respectively, when PEEK microparticles were added in epoxy resin composites.  相似文献   

8.
用电阻法测定了添加导电炭黑的环氧树脂固化过程。由于载流子是导电炭黑提供的电子,因而体系电阻率大大降低,测量方法得以简化,并使固化过程的测量可以一直进行,从而发现了环氧树脂固化过程存在着两个阶段:第一阶段,反映树脂粘度增加的电阻值上升;第二阶段,反映树脂密度增加的电阻值下降。  相似文献   

9.
田骏翔  李善君 《化学学报》2003,61(9):1471-1477
采用交叉反应研究在促进剂2-甲基咪唑存在下活性酯固化邻甲酚环氧树脂的反 应机理,用傅立叶转换红外(FTIR)原位测量技术,NMR,气-质联用(GC-MS)等 手段研究了模型化合物的反应动力学,并提出了其反应机理。结果表明,在促进剂 2-甲基咪唑存在下活性酯固化邻甲酚环氧树脂的反应是通过分子内机理进行的。  相似文献   

10.
含联苯结构的环氧树脂固化性能的研究   总被引:7,自引:0,他引:7  
以3,3′,5,5′-四甲基联苯二酚为单体,合成了一种含联苯结构的环氧树脂.用DDM和DDS为固化剂对环氧树脂的固化性能进行了研究,发现与双酚A型环氧树脂相比,含有联苯结构的环氧树脂具有更好的耐热性,同时在耐湿性方面也有很大改进.  相似文献   

11.
In this study, the curing kinetics of epoxy nanocomposites containing ultra-fine full-vulcanized acrylonitrile butadiene rubber nanoparticles (UFNBRP) at different concentrations of 0, 0.5, 1 and 1.5 wt.% was investigated. In addition, the effect of curing temperatures was studied based on the rheological method under isothermal conditions. The epoxy resin/UFNBRP nanocomposites were characterized via Fourier transform infrared spectroscopy (FTIR). FTIR analysis exhibited the successful preparation of epoxy resin/UFNBRP, due to the existence of the UFNBRP characteristic peaks in the final product spectrum. The morphological structure of the epoxy resin/UFNBRP nanocomposites was investigated by both field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) studies. The FESEM and TEM studies showed UFNBRP had a spherical structure and was well dispersed in epoxy resin. The chemorheological analysis showed that due to the interactions between UFNBRP and epoxy resin, by increasing UFNBRP concentration at a constant temperature (65, 70 and 75 °C), the curing rate decreases at the gel point. Furthermore, both the curing kinetics modeling and chemorheological analysis demonstrated that the incorporation of 0.5% UFNBRP in epoxy resin matrix reduces the activation energy. The curing kinetic of epoxy resin/UFNBRP nanocomposite was best fitted with the Sestak–Berggren autocatalytic model.  相似文献   

12.
Epoxy resin is a thermosetting polymer with excellent performance and wide application. However, it suffers from low toughness and high brittleness because of its high crosslink density. To overcome these disadvantages, this study synthesizes a toughened, flexible, and hydrophobic epoxy resin (DGEBDBP) by introducing a flexible segment into the polymer network via a thiol-ene click reaction. The cured flexible epoxy resin is obtained by mixing E44, DGEBDBP, and polyamide curing agents of varying contents. The long alkyl side chains significantly improve the mechanical properties and hydrophobicity of the cured epoxy resin. The sample containing 75% DGEBDBP and 25% E44 achieve the highest breaking elongation that was nine times that of pure E44, the highest compressive strength of 112.8 MPa, and the highest contact angle of 101.4°. The introduction of side chains through the thiol-ene click reaction can provide a simple and effective method for designing and preparing multifunctional epoxy resins.  相似文献   

13.
Abstract

High-strength, readily processable, char-forming, insulative materials are being sought for application in ablative heat shields for re-entry vehicles. Toward this end, the family of epoxy resins has been evaluated. The structure of epoxy resins and curing agents in terms of their functionality, aromaticity, and chemical nature is discussed in relation to its effect on ablative properties. The concept of controlled, constructive thermal degradation is extremely important in ablative epoxide compositions. Bridged Diels-Alder adducts based upon cyclic dienes and maleic anhydride perform well as epoxy resin curing agents in this respect. The mechanism of thermal ablative degradation of these systems is discussed in terms of in situ thermal control and char-forming reactions. The position of attachment of glycidyl groups, as well as the nature and position of other sub-stituents around the aromatic nucleus, has little effect in general upon the ablative properties of epoxy resins. Thermal and ablative data of both benzene and naphthalene derivatives are given. A new epoxy resin based upon 2-nitro resorcinol has been synthesized. This resin gives significant char increases, both quantitatively and qualitatively, over conventional epoxides. The unusual mechanism of polymerization and thermal degradation of this resin is discussed.  相似文献   

14.
本文应用DSC和FTIR对2-乙基-4-甲基咪唑固化双酚A二缩水甘油醚型环氧树脂体系的固化反应机理和2-乙基-4-甲基咪唑固化双酚A二缩水甘油醚型、缩水甘油酯与脂环型环氧树脂体系的固化反应特征、动力学及其反应活性进行了研究.结果表明,双酚A二缩水甘油醚型环氧树脂/咪唑体系的固化反应是分两步独立进行的,第一步是加成反应,第二步是催化聚合反应.缩水甘油酯与脂环型环氧树脂(TDE-85)/咪唑体系的固化反应过程也分两步进行,第一阶段反应主要是缩水甘油酯型环氧基进行的加成反应和催化聚合反应,第二阶段主要是脂环型环氧基进行的加成反应.各体系第一阶段的表现反应活化能均低于第二阶段活化能.当TDE-85型环氧树脂中引入缩水甘油醚型环氧树脂后,固化反应速率均较TDE-85环氧树脂单独固化时快.  相似文献   

15.
To analyze a curing process of epoxy resin in terms of molecular motion, we adapted a pulsed NMR method. Three kinds of (1)H spin-spin relaxation times (T(2L) (long), T(2S) (short) and T(2M) (intermediate)) were estimated from observed solid echo train signals as the curing process proceeded. A short T(2S) value below 20 micros suggests the existence of a motion-restricted chain, that is, cured elements of resin, and its fraction, P(S), sigmoidally increased with the curing time. On the other hand, the fraction of T(2L), P(L), decreased with the reaction time reciprocally against P(S), suggesting the disappearance of highly mobile molecules raised from pre-cured resin. The spin-lattice relaxation time, T(1), was also measured to check another aspect of molecular motion in the process. T(1) of the mixed epoxy resin and curing agent gradually increased just after mixing both of them. This corresponds to an increment of a less-mobile fraction, of which the correction time is more than 10(-6) s, and also means that the occurrence of a network structure whose mobility is strongly restricted by chemically bonded bridges between the epoxy resin and curing agent. The time courses of these parameters coincided with those of IR peaks pertinent to the curing reaction. Therefore, pulsed NMR is a useful tool to monitor the hardening process of epoxy resin in real time non-distractively in terms of the molecular motion of protons.  相似文献   

16.
Polymeric composite manufacturing is a large, rapidly growing and energy consuming industry, where there is an obvious and compelling need for innovative curing technologies conforming to energy efficiency and environmental protection trends. This has led to many research efforts to consider, or in some cases re‐consider, irradiation curing of polymer composites. However, there is still a stifling lack of knowledge of the fundamental mechanisms to obtain homogeneity in the irradiation curing of composites. The key issue of the irradiation curing process, i.e. homogeneous curing affected by electron beam dose and initiator concentration for an epoxy resin is the focus of this paper. The temperature profiles, microstructure, curing degree gradient, and thermomechanical properties of electron beam‐ irradiated epoxy resin were profiled and analyzed, and the results indicated that curing degree in the epoxy resin showed a relatively steady region and an accelerated decrease along the depth direction. It is revealed that there existed an optimal range of concentration of the initiator for irradiation curing of an epoxy resin system. The inhomogeneity in the irradiation‐induced crosslinking structure could be abated by adopting the properly applied irradiation energy and the matching between the irradiation dose and the concentration of the initiator. It can be deduced that for most of the composite products with large thickness, layer upon layer irradiation or irradiation from two sides could be more efficient to obtain a homogeneous crosslinking structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
电子束辐射固化环氧树脂的反应过程分析   总被引:2,自引:0,他引:2  
对双酚A型环氧树脂的电子束辐射固化反应过程进行了分析.考察了引发剂、稀释剂对树脂体系辐射反应的影响,以环氧丙烷作为模型化合物,研究了环氧丙烷-碘盐体系的电子束辐射反应机理,证实了在电子束辐射下,碘盐分解产生质子酸,引发环氧树脂阳离子开环聚合的反应过程.观测环氧树脂辐射固化区域发现,电子束穿过样品时发生强烈的散射,在辐射方向以及周围一定区域内引发固化反应,固化反应从活性中心开始向体系内部层层扩展,整个固化区域由很多的层状结构组成.  相似文献   

18.
Epoxy resins are important thermosetting resins widely employed in industrial fields. Although the epoxy–imidazole curing system has attracted attention because of its reactivity, solidification of a liquid epoxy resin containing imidazoles proceeds gradually even at room temperature. This makes it difficult to use them for one‐component epoxy resin materials. Though powder‐type latent curing agents have been used for one‐component epoxy resin materials, they are difficult to apply for fabrication of fine industrial products due to their poor miscibility. To overcome this situation and to improve the shelf life of epoxy–imidazole compositions, we have developed a liquid‐type thermal latent curing agent 1 , generating an imidazole with a thermal trigger via a retro‐Michael addition reaction. The latent curing agent 1 has superior miscibility toward epoxy resins; in addition, it was confirmed that the epoxy resin composition has both high reactivity at 150 °C, and long‐term storage stability at room temperature. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2680–2688  相似文献   

19.
The cure kinetics of epoxy resin and epoxy resin containing 10 mass% of natural zeolite were investigated using differential scanning calorimetry (DSC). The conformity of the cure kinetic data of epoxy and epoxy-zeolite system was checked with the auto-catalytic cure rate model. The results indicated that the hydroxyl group on the zeolite surface played a significant role in the autocatalytic reaction mechanism. This group was able to form a new transition state between anhydride hardener and epoxide group. The natural zeolite particles acted as catalyst for the epoxy system by promoting its curing rate.  相似文献   

20.
The study is focused on thermoset composites reinforced with carbon and glass woven fabrics. Two types of thermoset resins, for example, epoxy and vinyl ester were used as the matrix. Varying concentrations of internal mold releasing (IMR) agent was used in the resin. The composites were cured both at room temperature and at 80°C. The flexural properties were studied using 3‐point bending test method. Further theinter‐laminar shear strength (ILSS) was investigated using the short beam shear strength test based on 3‐point bending. The flexural modulus of room temperature cured epoxy resin is higher than that of high temperature cured epoxy resin and cured vinyl ester resin. The flexural modulus is lowest for 1% IMR sample in epoxy system and the modulus for 0% and 2% epoxy are not significantly different. Lowest flexural strength and modulus can be observed for the combination of reinforcement and curing conditions for samples containing 1% IMR for the epoxy systems. Carbon fiber is found to be less compatible with the vinyl ester resin system and the addition of IMR to the resin degraded the properties further. Inter‐laminar shear strength for epoxy‐based composites is not much affected by presence of IMR, but in case of vinyl ester based composites there is a decrease in ILSS on addition of IMR agent. The study explains variation in flexural properties on addition of IMR and change of curing conditions. These results can be used for ascertaining variation in mechanical properties in real use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号