首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UHMWPE viscoelastic fibers show great interest as reinforcement within composites and especially when used in SRPs (Self-Reinforced Polymers). They provide ductility, lightness and recyclability, benefits that glass or carbon fibers cannot provide. It is, therefore, necessary to increase knowledge about the behavior of UHMWPE fibers. Before the thermomechanical characterization of these yarns, an experimental protocol is proposed, validated and it supplements the existing standard. Monotonous, load-unload and creep tensile tests were carried out on Doyentrontex® yarns. Temperature and strain rate dependencies were observed. A time-temperature superposition is used to reconstruct the evolutions of modulus at 0.5%, maximum strength, and strain at break at 23 °C over a wide range of strain rates. The behavior of the yarns studied appears to be complex. Indeed, at low temperatures, a hyperelastic type of behavior, combined with plasticity, predominates whereas a more elasto-viscoplastic one emerges at 100 °C. From creep tests, a time-temperature-stress level superposition leads to the reconstruction of the yarns creep behavior over a long period at the reference temperature 23 °C and the reference stress level, which is 40% of the stress at break in tensile tests at any given test temperature.  相似文献   

2.
The objective of this study was to develop a model to predict the viscoelastic material functions of a vinyl ester (VE) polymer with variations in its experimentally obtained material properties under combined isothermal and mechanical loading. Short-term tensile creep experiments were conducted at three temperatures below the glass transition temperature of the VE polymer, with 10 replicates for each test configuration. The measured creep strain versus time responses were used to determine the creep compliances using the generalized viscoelastic constitutive equation with a Prony series representation. The variation in the creep compliances of a VE polymer was described by formulating the probability density functions (PDFs) and the corresponding cumulative distribution functions (CDFs) of the creep compliances using a two-parameter Weibull distribution. Both Weibull scale and shape parameters of the creep compliance distributions were shown to be time and temperature dependent. Two-dimensional quadratic Lagrange interpolation functions were used to characterize the Weibull parameters to obtain the PDFs and, subsequently, the CDFs of the creep compliances for the complete design temperature range during steady state creep. At each test temperature, creep compliance curves were obtained for constant CDF values and compared with the experimental data. The predicted creep compliances of the selected VE polymer in the design space are in good agreement with the experimental data for all three test temperatures.  相似文献   

3.
The use of fluorinated ethylene propylene (FEP) foils as engineering materials for aerospace, solar thermal collector and neutrino detector applications has attracted considerable attention in recent decades. Mechanical properties are indispensable for analyzing corresponding structural behavior to meet the demands of safety and serviceability. In this paper, uniaxial tensile tests taking into account loading speeds, uniaxial tensile cyclic tests in terms of stress amplitude and loading cycles and creep tests considering loading stress and time were carried out to characterize mechanical properties. For uniaxial tensile properties, elastic modulus, yield stress, breaking strength and elongation were analyzed in detail. It is found that these mechanical properties except breaking elongation increased with loading speeds and that mechanical properties obtained in transverse direction were more sensitive than those obtained in machine direction. For cyclic properties, elastic modulus and ratcheting strain tended to be stable after certain cycles, demonstrating that cyclic elastic moduli were more suitable for analyzing structural behavior than those obtained in uniaxial tensile experiments. For creep properties, apparent strain at 6 MPa suggested that special attention was necessary for analyzing structural behavior if maximum stress was larger than 6 MPa. In general, this study could provide useful observations and values for understanding mechanical properties of FEP foils.  相似文献   

4.
分别通过改变机械振动注塑机的频率(5~25 Hz)和压力(10~18 MPa)获得不同条件下成型的PP样条,然后在各种成型条件下的PP样条上分别施加相同的拉伸力(F=125 N),进行24 h拉伸蠕变实验.结果表明,在相同的振动频率(10 Hz)和不同的振动压力下成型的PP试样,其24 h蠕变量随着压力的增大而减小;在相同振动压力(12 MPa)和不同的振动频率下成型的PP试样,其24 h蠕变量随着频率的增大而增大.当振动频率达到f=10 Hz的时候,其24 h拉伸蠕变量的变化趋于平缓.同时,也对不同振动条件下注塑的PP试样进行拉伸实验,冲击实验和动态力学性能测试,讨论了成型条件对性能的影响.  相似文献   

5.
The mechanical behavior of HDPE, medium-density PE, and amorphous and amorphous-crystalline PET after their preliminary orientation is studied. The polymers are oriented by rolling at room temperature on lab-scale rolls, tensile drawing at temperatures somewhat higher than their glass-transition temperatures, and extrusion at room temperature. At low degrees of rolling (below 1.5), the tensile yield stress does not actually increase. (In amorphous-crystalline PET, this parameter even decreases.) It seems that the absence of strain hardening at low draw ratios is a common feature of the behavior of polymers below their glass-transition temperatures. In contrast to the tensile yield stress, the engineering strength increases in proportion to the degree of rolling. A new procedure for construction of the dependence of true tensile yield stress on tensile strain is advanced. At low strains, the true tensile yield stress shows practically no increase. This conclusion is verified by theoretical calculations.  相似文献   

6.
The creep life of aluminum conductor composite core (ACCC) utilized in high voltage electric transmission was investigated using an experimental method based on the equivalence relationship. First, the time-temperature-stress equivalence relationship was developed using the time-temperature and the time-stress equivalence relationships. Then, tensile creep experiments were conducted under different temperatures and different stress levels to obtain the strain-time curves of the ACCC. Finally, the creep strain master curve was obtained using the experimental data based on the time-temperature-stress equivalence relationship, allowing prediction of ACCC creep life. The results will play an important role in evaluation of the long-term characteristics of the ACCC for engineering applications.  相似文献   

7.
The prediction of long term failure behaviors and lifetime of aged glass polymers from the short term tests of reduced rupture creep compliance (or strain) is one of difficult problems in polymer science and engineering. A new “universal reduced rupture creep approach” with exact theoretical analysis and computations is proposed in this work. Failure by creep for polymeric material is an important problem to be addressed in the engineering. A universal equation on reduced extensional failure creep compliance for PMMA has been derived. It is successful in relating the reduced extensional failure creep compliance with aging time, temperature, levels of stress, the average growth dimensional number and the parameter in K-W-W function. Based on the universal equation, a method for the prediction of failure behavior, failure strain criterion, failure time of PMMA has been developed which is named as a universal “reduced rupture creep approach”. The results show that the predicted failure strain and failure time of PMMA at di?erent aging times for different levels of stress are all in agreement with those obtained directly from experiments, and the proposed method is reliable and practical. The dependences of reduced extensional failure creep compliance on the conditions of aging time, failure creep stress, the structure of fluidized-domain constituent chains are discussed. The shifting factor, exponent for time-stress superposition at differentlevels of stress and the shifting factor, exponent for time-time aging superposition at different aging time are theoretically defined respectively.  相似文献   

8.
《Solid State Sciences》2012,14(5):587-597
This paper presents an analytical solution for time-dependent behaviors of a hollow sphere made of functionally graded piezoelectric material (FGPM) under the coupling of multi-fields. Material properties, electric parameters, permeability, thermal conductivity and creep parameters vary smoothly through the radial direction of the FGPM spherical structure according to a simple power-law. Using equations of equilibrium, stress–strain and strain-displacement in a differential equation, containing creep strains, for displacement are obtained. Firstly, ignoring creep strains in the differential equation, a closed form solution for the initial electromagnetothermoelastic stresses at zero time is presented, and considering Von Mises stress balance equation, the effective electromagnetothermoelastic stresses are also presented. Secondly, considering only creep strains, creep stress rates are obtained by using the Prandtl–Reuss equations and Norton’s law. Finally, time-dependent creep stress redistributions at any time ti are obtained iteratively. The aim of this research is to understand the effects of the graded index on creep behavior of hollow spherical structures and design optimum FGPM hollow spherical structures.  相似文献   

9.
The physical aging behavior of an isotropic amorphous polyimide possessing a glass transition temperature of approximately 239°C was investigated for aging temperatures ranging from 174 to 224°C. Enthalpy recovery was evaluated as a function of aging time following sub‐Tg annealing in order to assess enthalpy relaxation rates, and time‐aging time superposition was employed in order to quantify mechanical aging rates from creep compliance measurements. With the exception of aging rates obtained for aging temperatures close to Tg, the enthalpy relaxation rates exhibited a significant decline with decreasing aging temperature while the creep compliance aging rates remained relatively unchanged with respect to aging temperature. Evidence suggests distinctly different relaxation time responses for enthalpy relaxation and mechanical creep changes during aging. The frequency dependence of dynamic mechanical response was probed as a function of time during isothermal aging, and failure of time‐aging time superposition was evident from the resulting data. Compared to the creep compliance testing, the dynamic mechanical analysis probed the shorter time portion of the relaxation response which involved the additional contribution of a secondary relaxation, thus leading to failure of superposition. Room temperature stress‐strain behavior was also monitored after aging at 204°C, with the result that no discernible embrittlement due to physical aging was detected despite aging‐induced increases in yield stress and modulus. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1931–1946, 1999  相似文献   

10.
Uniaxial stress-controlled ratcheting experiments on PTFE gaskets under cyclic compressive loads with small stress amplitude were performed. The effect of temperature on the deformation behavior was considered. Results showed that the compressive modulus decreases rapidly when the temperature increases from 100 °C to 200 °C. Compressive ratcheting deformation with cycles increase significantly with the increases of temperature. The ratcheting deformations at 100 °C, 150 °C and 200 °C are nearly two, three and five times that at room temperature, respectively. Most of ratcheting deformation mainly occurs during the first 20 cycles because the subsequent ratcheting rate and strain range are small and much less than those in the previous cycles. The accumulated deformation under cyclic loads with small stress amplitude is relatively approach to the static compressive creep with the same peak stress. Therefore, the accumulated deformation with time of PTFE gaskets obtained by cyclic compression with small stress amplitude can be estimated by the corresponding static creep deformation with good accuracy under the approximate stress rate and the same temperature, especially at room temperature.  相似文献   

11.
Equipment and methods have been developed which allow photomicrographic determination of the stress–strain properties of the individual craze. Serial cyclic tensile tests on polycarbonate crazes are described. Under stress the typical dry polycarbonate craze thickens solely by straining; no adjacent polymer of normal density is converted to craze material. The craze exhibits a yield stress followed by a recoverable flow to roughly 40–50% strain at 6000–8000 psi. On return to zero stress the craze exhibits creep recovery at a decelerating rate. The yield stress and loss factor of each cycle decrease with increasing initial strain and cycles initiating at 50% strain or more show completely Hookean behavior. Creep recovery results in recovery of yield stress and loss factor also. Craze tensile behavior is suggested to be essentially an extension of the craze formation process. Decrease in elastic modulus and yield stress with increasing strain are rationalized in terms of strain-produced decrease in density and resultant increase in stress concentration factor on the microscopic polymer elements of the craze. Polymer surface tension and the large internal specific surface area of the craze are suggested to be important factors in the large creep recovery rates of the craze.  相似文献   

12.
A study has been carried out of the differences in mechanical properties of oriented fibers of poly(ethylene terephthalate) (2GT), poly(trimethylene terephthalate) (3GT), and poly(tetramethylene terephthalate) (4GT). The properties studied include the tensile stress–strain behavior, the recovery from strain, shrinkage at 100°C and the glass-transition temperatures. The stress–strain curves of the three materials differ markedly. 2GT shows a monotonic increase in stress with increasing strain up to failure, which occurs at ~20% strain, and the oriented fibers possess a comparatively high initial modulus. 3GT shows a much lower initial modulus and there is an inflection in the stress–strain curve at about 5% strain. The stress–strain curve of 4GT shows a number of distinct features. Although the initial modulus of 4GT is similar to that of 3GT, the stress–strain curve shows a pronounced plateau in the region between 4% and 12% strain. At higher strains the stresses rise rapidly before failure. These features of the stress–strain curves in the three polymers can be related to previous studies where the x-ray diffraction spectrum and the Raman spectrum have been examined for fibers under stress. The ranking of both the recovery and shrinkage behavior of these materials is in the order 3GT > 4GT > 2GT. These results can also be understood in terms of the results of the previous structural studies, and it is concluded that the molecular conformations in both the crystalline and noncrystalline regions play a key role in determining the mechanical behavior.  相似文献   

13.
The high cost (material, service, and production loss) involved to substitute a condemned flexible pipe whose pressure sheath has reached its theoretical preconized service life has motivated this study. Therefore, the main objective is to propose a constitutive equation for in-service aged polyamide 11 (PA11) describing the creep behavior as a function of temperature, stress level, and Corrected Inherent Viscosity (CIV), this latter parameter representing the level of material degradation due to hydrolysis. The constitutive equation may be employed for gap spanning analysis and also to subsidize the decision to extend the operational life of flexible pipes that have experienced more severe conditions or have been used for a longer time than designed. The current models to assess the remaining life of the sheath are based only on a single property decay based on corrected intrinsic viscosity (CIV) curves obtained from laboratory tests. To compare the result from the life-prediction model in use and the material mechanical behavior, an experimental campaign was performed using polyamide 11 (PA 11) samples retrieved from a 6″ gas production flexible flowline, which theoretically had reached a full-damaged condition after nearly 3 years operating at higher than specified temperature (80 °C). Dog-bone geometry specimens were machined from the internal, intermediate, and external layers of the flexible flowline pressure sheath. Once polymers are excellent thermal insulators, it was assumed that the material operated under different temperatures within the thickness and, therefore, presents different degradation degrees. CIV, tensile, and creep analyses were performed, confirming that the behavior is different for each region within the thickness of the pressure sheath. Differential scanning calorimetry (DSC), thermogravimetry analyses (TGA), and dynamic thermomechanical analysis (DMA) were performed to comparatively characterize the degree of crystallinity, amount of extractables and morphology of each section. A creep behavior model considering the gradient difference in the material is proposed. It is concluded that aging is different across the liner thickness, and the PA11 creep behavior may be expressed as a function of the CIV, temperature, and stress.  相似文献   

14.
The creep behavior of PMMA immersed in liquid scintillator at room temperature was experimentally studied with a new type of creep test machine. Both short-term and creep-rupture tensile tests at eight stress levels were performed. A master curve of creep compliance at a reference stress was obtained according to the Time-Stress Superposition Principle. The master curve was compared with the actual long-term creep curve. It demonstrates that the two curves coincide well at short times. However, the actual creep data shows a higher creep rate as time goes on. The actual lifetime is much shorter than that predicted by the master curve. Furthermore, the relationship between long-term creep limited strength and service life was determined. The results can be used to guide the safety design of PMMA vessels for application in a neutrino observatory.  相似文献   

15.
The environmental stress cracking (ESC) effects on PVC of various high pH sodium hydroxide environments have been studied. The behaviour of PVC specimens in air and pH 12, 13, 13.5 and 14.39 sodium hydroxide solutions has been examined under three-point bend, tensile and creep conditions. Two parameters were used in three-point bend testing to determine the effect of an applied strain and high pH environment on the stability of PVC, namely time to craze initiation and width of crazing. It was found that, in general, crazing occurred sooner and to a greater degree with increasing strain and pH, although there was some evidence that craze growth was most rapid at pH 13.5. The results also indicated a critical strain value of 1.5–1.6%, below which crazing was not observed in any of these alkaline environments. Creep and tensile testing revealed that the time for which a PVC specimen was immersed in the environment was very important in determining the severity of the environmental effect. Creep tests at elevated temperatures showed that the time for the effects to be manifest decreased with increasing temperature. Creep rates were highest in pH 13.5 sodium hydroxide solution indicating that this was the most hostile of the environments considered.  相似文献   

16.
As Nickel (Ni) is the base of important Ni-based superalloys for high-temperature applications, it is important to determine the creep behavior of its nano-polycrystals. The nano-tensile properties and creep behavior of nickel polycrystalline nanopillars are investigated employing molecular dynamics simulations under different temperatures, stresses, and grain sizes. The mechanisms behind the creep behavior are analyzed in detail by calculating the stress exponents, grain boundary exponents, and activation energies. The novel results in this work are summarized in a deformation mechanism map and are in good agreement with Ashby’s experimental results for pure Ni. Through the deformation diagram, dislocation creep dominates the creep process when applying a high stress, while grain boundary sliding prevails at lower stress levels. These two mechanisms could also be coupled together for a low-stress but a high-temperature creep simulation. In this work, the dislocation creep is clearly observed and discussed in detail. Through analyzing the activation energies, vacancy diffusion begins to play an important role in enhancing the grain boundary creep in the creep process when the temperature is above 1000 K.  相似文献   

17.
冷冻/解冻制备的聚乙烯醇水凝胶的结构和流变性研究   总被引:3,自引:0,他引:3  
研究了冷冻/解冻法制备的不同浓度(5wt%~25wt%)聚乙烯醇(PVA)水凝胶的结构和流变行为之间的关系.由XRD确定了凝胶中PVA的结晶度和晶粒尺寸.用应力流变仪研究了凝胶的流变行为,包括动态模量和蠕变等.在频率为1Hz和低应力的条件下,测量了凝胶的储能模量和损耗模量.在该试验条件下,PVA水凝胶的形变是完全可以回复的.低频率区和低应变区的储能模量随浓度增加而变大,但当浓度超过20wt%时,储能模量增加速率明显降低.由PVA水凝胶在1Hz时的储能模量和结晶度的数据,理论分析得到了形成PVA水凝胶的最低PVA浓度和最小结晶度.当PVA浓度低于15wt%时,储能模量主要由PVA的微晶控制,分子链间的氢键影响很小.通过低应变区储能模量的数值计算出了凝胶网孔尺寸的结构参数.同时对不同温度下PVA水凝胶的储能模量数据进行了标度分析.PVA水凝胶的蠕变行为显示,随浓度提高,凝胶的蠕变黏弹性由线性向非线性转变.  相似文献   

18.
Dynamic tensile tests were performed on polycarbonate using a split Hopkinson tension bar (SHTB) system. A prefixed short metal bar was used to generate the incident stress pulse. The shape of the incident pulse was controlled to meet the requirement of the one-dimensional experimental principle of SHTB. The dynamic tensile stress–strain responses of polycarbonate at high strain rates up to a rate of 1750 s−1 were obtained. Experimental results indicate that the tensile behavior of polycarbonate is dependent on the strain rate. Its yield stress and unstable strain all increase with the increased strain rate. The yield behavior was modeled for a wide range of strain rates based on the thermally activated theory. The correlation between the experimental data and the model is good.  相似文献   

19.
Irreversible deformation of isotactic polypropylene in the pre-yield regime   总被引:1,自引:0,他引:1  
In the modeling of the mechanical response of a polymer over a large strain range, the nonlinear viscoelastic and viscoplastic behavior must be considered. For many polymers, nonlinear behavior is observed at low loads, e.g. by a stress-dependence of the creep compliance for stresses above 2 MPa in case of the polypropylene used in this study. Additionally, plastic deformation has been observed at strains below the yield point for several polymers. In this study, the irreversible deformation by cavitation and shear yielding of polypropylene are characterized in the pre-yield regime in uniaxial tensile tests using digital image correlation. The recovery of strain after unloading at a prescribed strain level is measured and used to identify the evolution of the plastic strain during uniaxial tension. An experimental technique for simultaneous determination of the true stress–true strain curve and the degree of stress whitening, which relates to the amount of cavitation, is introduced and the initiation of cavitation is compared to the plastic deformation detected in strain recovery at various temperatures.  相似文献   

20.
Understanding the deformational and failure behaviors of thermoplastic semicrystalline polymers is crucial due to the practical usages in various engineering applications. Taking isotactic polypropylene (iPP) as a semicrystalline polymer model system, atomistically informed coarse‐grained (CG) molecular dynamics (MD) simulations are employed to investigate the creep behavior of iPP. The simulations reveal that there exists a threshold stress of about 20.0 MPa, above which the maximum strain of iPP within the simulation time span increases dramatically. From the strain‐time analysis, it is observed that the iPP exhibits an initial elastic deformation stage and a subsequent plastic stage at lower stress levels, while a three‐stage creep behavior including a third fracture stage is observed at higher stress levels. Specifically, at lower stress levels, the bonded energy increases continuously as the chains stretch steadily, while the nonbonded energy shows an initial increase followed by a steady decrease due to the interchain sliding. At higher stress levels, both bonded and nonbonded energies change dramatically at the third stage, resulting from accelerated chain stretching, unfolding, sliding, and breaking. This study provides physical insight into the creep behavior of iPP at a fundamental molecular level and highlights the important role of microstructural evolution of chains in the deformation of semicrystalline polymer materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1779–1791  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号