首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal and mechanical properties of polylactide (PLA) composites with different grades of calcium carbonate, 40 nm and 90 nm nanoparticles, and also with submicron particles, unmodified and modified with calcium stearate or stearic acid, obtained by melt mixing, were compared. Films with amorphous and crystalline matrices were prepared and examined.Tg of PLA in the composites remained unaffected whereas its cold crystallization was enhanced by the fillers and predominantly depended on filler content. Filling decreased thermal stability of the materials but their 5% weight loss temperatures well exceeded 250 °C, evidencing stability in the temperature range of PLA processing. The amorphous nanocomposites with modified nanoparticles exhibited improved drawability and toughness without a significant decrease of tensile strength; nearly two-fold increase of the elongation at break and tensile toughness was achieved at 5 wt% content of the modified nanofiller. Lack of surface modification of the filler, larger grain size with an average of 0.9 μm, and matrix crystallinity had a detrimental effect on the drawability. However, the presence of nanofillers and crystallinity improved tensile modulus of the materials by up to 15% compared to neat amorphous PLA.  相似文献   

2.
With the increased demand for three-dimensional (3D) printing technology in various fields, it is important to develop high-performance resin that could withstand temperature changes to expand their application potential. A new photosensitive oligomer (BDM–DDM–ETPS–GMA) based on epoxy-terminated polyether siloxane (ETPS) and bismaleimide diphenylmethane/4, 4′-diaminodiphenylmethane (BDM–DDM) resin was synthesized and then mixed with other oligomers, reactive diluents, and photoinitiators to prepare a novel 3D printing resin. The results show that the resulting resins exhibit good fluidity and rapid photopolymerization ability, which satisfies the rheological prerequisites of 3D printing resin. Moreover, the incorporation of BDM–DDM–ETPS–GMA can simultaneously improve the cryogenic stiffness and toughness of commercial resin. Specifically, the tensile strength, elongation at break, flexural strength, impact strength, and storage modulus at ?30 °C of modified resin with 15% BDM–DDM–ETPS–GMA are 151.2 MPa, 10.9%, 146.2 MPa, 9.8 kJ/m2, and 4,131 MPa, respectively, which are about 2.81, 1.70, 1.37, 1.81, and 1.54 times of that of commercial resin. A synergistic enhancement mechanism is believed to be attributed to these results, which includes the introduced flexible siloxane chain and the rigid bismaleimide structure as well as decreased cross-linking density. These attractive features of modified resins suggest that the method proposed herein is a new approach to develop high-performance 3D printing photosensitive resin simultaneously with outstanding cryogenic strength and toughness and thus has wide application potential in the aerospace, military industry, and other cutting-edge fields.  相似文献   

3.
With the dwindling of petroleum resources worldwide, there is an immediate need for a renewable, environment friendly, cost effective and sustainable bio-resource in the textile industry. Here, we report a dual crosslinked fiber (DCF) derived from renewable biopolymers. In this study, keratin was extracted from bio-waste of chicken feathers with a thiol content of 0.172 mM. The extracted keratin was used to prepare dope with alginate at different ratios and N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride via amide linkages. The formation of covalently crosslinked dope was evidenced from FTIR and ninhydrin assay. The dope was then extruded in calcium bath to produce fibers with uniform diameter wherein the calcium ions were used to ionically crosslink the covalently crosslinked dope. The resulting dual crosslinked fibers were characterized in terms of chemical composition, surface morphology, mechanical properties, thermal degradation, and swelling. The strength, modulus and toughness of the dual crosslinked fibers were substantially improved by 27%, 20%, and 33% respectively than that of control alginate fiber. The gravimetric toughness of the optimised dual crosslinked fiber (724 J g−1) was much higher than the values reported for Kevlar (78 J g−1). We further assembled the dual crosslinked fibers into complex braided architectures using the textile techniques, demonstrating the flexibility of the fibers. We believe that this preliminary work of sustainable fiber production could open new insights into eco-friendly organic textile manufacturing and for tissue engineering applications.  相似文献   

4.
In this study, Zr-pillared montmorillonite clays (Zr-PILCs) were synthesized using two different precursor materials: raw montmorillonite (CM) and sodium ion-saturated montmorillonite (Na-CM) at different Zr/clay ratios (2.5, 5 and 10 mmol/g). To study the effect of Zr concentration and clay pre-treatment with NaCl on pillaring, the modified clay samples were characterized in detail using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy (STEM-EDX). The XRD analysis showed the increase of basal spacing of Zr-PILCs prepared from both precursor materials: from 1.26 to 1.74 nm in the case of CM, and from 1.13 to 1.93 nm for Na-CM. Results from FT-IR revealed new bands ascribed to Zr-O bonds in the range of 400–500 cm?1 in Zr-pillared samples obtained from Na-CM at Zr/clay ratios of 2.5 and 5 mmol/g. The distribution and nature of Zr species in between the silicate layers were studied using STEM-EDX and HAADF imaging. They were found to be separated by a distance of 1.5–3 nm and their thickness lies in the range of 1–2 nm. Pillared clays prepared from pre-treatment with NaCl were more thermally stable at higher temperatures.  相似文献   

5.
A new method for simultaneous determination of organic acids in red wine and must by liquid chromatography was studied. The determination of organic acids in wines can be achieved in less than 13 min, preceded only by a simple sample dilution and filtration step. With this method, the chromatographic separation of eight organic acids and interfering peaks present in red wine, required only one reversed phase column (Waters Atlantis dC18 column, 4.6 × 150 mm ID, 5 μm). As mobile phase, isocratic acetonitrile–0.01 mol L−1 KH2PO4 at pH 2.7 5:95 (v/v) at a flow rate of 0.8 mL min−1 was used. Detection wavelength was set at 210 nm except for ascorbic acid which was detected at 243 nm. Application to red wine and must confirmed good repeatability and showed a wide variation range for concentrations of organic acids.  相似文献   

6.
This article reports the studies of photo-oxidative behaviour of polypropylene/maleic anhydride-grafted polypropylene/organic modified montmorillonite (PP/PPgMA/OMMT) composites prepared by two different melt processing methods. Samples of pristine polypropylene (PP) and PP/PPgMA/OMMT composites were prepared in an internal mixer and in a twin screw extruder. The samples were exposed to long wavelength radiations (λ > 300 nm) for the photo-oxidation. The samples were examined by FTIR, X-ray diffraction and microscopy. Similar to the pristine (PP), it is found that the photo-oxidation process in the composites depends on the melt processing conditions, which could cause the deterioration of organic modifier of the clay and the polymer matrix. The new radicals formed in addition to the iron impurities in the montmorillonite accelerate the photo-oxidation.  相似文献   

7.
Bio-derived materials could play an important role in future sustainable green and health technologies. This work reports the synthesis of a unique egg white-based bio-derived material showing excellent stiffness and ductility by polymerizing it with primary amine-based chemical compounds to form strong covalent bonds. As shown by both experiments and theoretical simulations, the amine-based molecules introduce strong bonds between amine ends and carboxylic ends of albumen amino acids resulting in an elastic modulus of ~4 GPa, a fracture strength of ~2 MPa and a high ductility of 40%. The distributed and interconnected network of interfaces between the hard albumen and the soft amine compounds gives the structure its unique combination of high stiffness and plasticity. A range of in-situ local and bulk mechanical tests as well as molecular dynamics (MD) simulations, reveal a significant interfacial stretching during deformation and a micro-crack diversion leading to an increased in ductility and toughness. The structure also shows a self-stiffening behavior under dynamic loading and a strength-induced aging suggesting adaptive mechanical behavior. This egg white-derived material could also be developed for bio-compatible and bio-medical applications.  相似文献   

8.
In the present work, the chalcogen (Se2+)-doped ZnO nanoparticles (SeZO-NPs) were synthesized using sol-gel precipitation method and tested for photocatalytic degradation of Rhodamine B (RhB). X-ray diffraction pattern of SeZO-NPs showed the hexagonal wurtzite crystal structure regardless of Se concentration. The band edge and defect-level emissions of SeZO-NPs were determined by using the photoluminescence spectra with the excitation source of 370 nm. The bandgap, Eg, of SeZO-NPs was measured from diffused reflectance spectroscopy, which increased from 3.22 to 3.26 eV as Se concentration increased from 0 to 10 wt.%. The highest specific surface area and lowest pore size of 5-SeZO-NPs were observed to be 36.42 m2/g and 13.48 nm, respectively. The photocatalytic degradation of SeZO-NPs was measured under the illumination of ultraviolet (UV) light. The double donor (Se) played an important role toward photodegradation of RhB via reducing the recombination of charge carriers. The highest photocatalytic degradation (98.23%) and mineralization were achieved for the sample 5-SeZO (Se: 5 wt.%). The improved photocatalytic performance of 5-SeZO was attributed to the optimum Se dopant concentration for the production of more reactive oxygen species because of effective separation of charge carriers in UV light.  相似文献   

9.
Recently-discovered lignocellulosic solvent, 8%(w/w) lithium chloride/dimethyl sulfoxide (LiCl/DMSO), was found to dissolve cellulose of varied crystal forms and degree of polymerization. Cellulose samples could be activated for dissolution by complexation with ethylenediamine (EDA), giving EDA contents of 20–23% (w/w) in the complex irrespective of the cellulose type. The cellulose solution gave well-resolved 13C NMR spectrum, confirming molecular dispersion. Cellulose could be coagulated by ethanol to give translucent cellulose gels, which could be converted to highly porous aerogels via solvent exchange drying. Nitrogen adsorption analysis gave their specific surface areas of 190–213 m2/g, with typical mesopore sizes of 10–60 nm. Scanning electron microscopy revealed the network structure of aerogel composed of relatively straight fibril segments, approx. 20 nm wide and 100–1,000 nm long. X-ray diffraction showed that the material is poorly crystalline cellulose II.  相似文献   

10.
An estimation of the Young’s modulus of bacterial cellulose filaments   总被引:4,自引:1,他引:3  
An estimation, using a Raman spectroscopic technique, of the Young’s modulus of a single filament of bacterial cellulose is presented. This technique is used to determine the local molecular deformation of the bacterial cellulose via a shift in the central position of the 1095 cm–1 Raman band, which corresponds to the stretching of the glycosidic bond in the backbone of the cellulose structure. By calculating the shift rate with respect to the applied strain it is shown that the stiffness of a single fibril of bacterial cellulose can be estimated. In order to perform this estimation, networks of fibres are rotated through 360° and the intensity of the 1095 cm−1 Raman band is recorded. It is shown that the intensity of this band is largely independent of the angle of rotation, which suggests that the networks are randomly distributed. The modulus is predicted from a calibration of Raman band shift against modulus, using previously published data, and by using Krenchel analysis to back-calculate the modulus of a single fibril. The value obtained (114 GPa) is higher than previously reported values for this parameter, but lower than estimates of the crystal modulus of cellulose-I (130–145 GPa). Reasons for these discrepancies are given in terms of the crystallinity and structural composition of the samples.  相似文献   

11.
A simple, high-performance counter-current chromatography method with sequential UV absorbance (254 nm) and evaporative light scattering detection (ELSD) was developed for the quantification of pre-extracted low molecular weight dissolved organic matter (DOM) extracted from natural waters. The method requires solid-phase extraction (SPE) extraction of only small volumes of water samples, here using poly(styrenedivinylbenzene)-based extraction cartridges (Varian PPL). The extracted and concentrated DOM was quantified using reversed-phase high-performance counter-current chromatography (HPCCC), with a water/methanol (5:5) mobile phase and hexane/ethyl acetate (3:7) stationary phase. The critical chromatographic parameters were optimised, applying a revolution speed of 1900 rpm and a flow-rate of 1 mL min−1. Under these conditions, 50 μL of extracted DOM solution could be injected and quantified using calibration against a reference natural dissolved material (Suwannee River), based upon UV absorbance at 254 nm and ELSD detection. Both detection methods provided excellent linearity (R2 > 0.995) for DOM across the concentration ranges of interest, with limits of detection of 4 μg ml−1 and 7 μg ml−1 for ELSD and UV absorbance, respectively. The method was validated for peak area precision (<5%), and accuracy and recovery based upon spiking seawater samples prior to extraction, together with DOM solutions post-extraction (>95% recovery). The developed method was applied to the determination of the concentration of DOM in seawater, based upon initial sample volumes as small as 20 mL.  相似文献   

12.
Electrochemistry provides a simple and promising method for preparing organic solar cells (OSCs). In this paper, we present a two-step solution-based method to prepare bilayer heterojunction OSCs by electrodepositing polythiophene (PTh) and then spin-coating chloroform solution of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) onto the PTh layer. The influence of film thickness on performance of bilayer solar cells was investigated, and the best performance was achieved when the thickness of PTh and PCBM was 15 nm and 30 nm, respectively. The optimized solar cell showed power conversion efficiency of 0.1% under the illumination of AM 1.5 (100 mW cm−2) simulated solar light. This solution-based method offers a new way for processing bilayer OSCs.  相似文献   

13.
Nonlinear optics is a fascinating field, which plays a vital role in the emerging field of photonics and optoelectronics. A new nonlinear optical crystal of glycine mixed l-valine picrate (GVP) have been grown from saturated aqueous solution by slow evaporation method at a temperature of 36 °C using a constant temperature bath of accuracy of ±0.01 °C. The synthesized organic optical material has been purified by repeated recrystallization. Single crystal X-ray diffraction analysis has been made to determine the cell parameters and it confirms the crystal lattice to be orthorhombic. UV–vis-NIR spectrum have recorded for GVP crystals in the range from 190 nm to 1100 nm and it is found that the crystal has cut-off at 450 nm. Fourier transform infrared transmission has confirmed the presence of the functional group present in the title compound. The spectrum has been recorded by KBr pellet technique. The 1H and 13C NMR spectra have been recorded to elucidate the molecular structure of GVP crystals. The second harmonic generation (SHG) of the grown crystal have been confirmed by Kurtz–Perry method using Nd:YAG laser as source.  相似文献   

14.
All-cellulose nanocomposites using bacterial cellulose (BC) as a single raw material were prepared by a surface selective dissolution method. The effect of the immersion time of BC in the solvent (lithium chloride/N,N-dimethylacetamide) during preparation on the nanocomposite properties was investigated. The structure, morphology and mechanical properties of the nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, and tensile testing. The optimum immersion time of 10 min allowed the preparation of nanocomposites with an average tensile strength of 411 MPa and Young’s modulus of 18 GPa. With the longest immersion time of 60 min, the prepared composite sheet turns to express a very high toughness characteristic possessing a work-to-fracture as high as 16 MJ/m3. These biobased nanocomposites show high performances thanks to their unique structure and properties.  相似文献   

15.
New members of the AnBn−1O3n perovskite-like family (Ba5KNb5O18 and Sr6Nb4SnO18 compounds) with n = 6 have been synthesized and studied by the X-ray powder diffraction. Their crystal structures were found to belong to the Ba6Nb4TiO18-type with a = 0.57840(7) nm, c = 4.2532(5) nm and a = 0.5661(1) nm, c = 4.186(1) nm for Ba5KNb5O18 and Sr6Nb4SnO18, respectively. It was shown that Ba and K (A-atoms) are completely disordered in the crystal structure of Ba5KNb5O18 compound. But Nb and Sn atoms (B-atoms) in the crystal structure of the Sr6Nb4SnO18 compound are quite ordered with the preferred Sn+4 and Nb5+ cations localization in the center of perovskite-like block and on the boundaries of these blocks, respectively. Temperature and frequency dependencies of the real components of electric conductivity σI and dielectric permeability ɛI; specific electric conductivity at the direct current σdc have been obtained by the impedance spectroscopy method for Sr6Nb4SnO18.  相似文献   

16.
Synthesis of Gd doped Srx O: CdO (x = 1.4, 1.6, 1.8) nanostructures (NS) was achieved through the coprecipitation method by using CTAB (cetyl trimethyl ammonium bromide) with the purpose to investigate the effect of Gd doping on the optical, structural, morphological, and photoluminescence properties at room temperature. Mixed phase of tetragonal crystal structure verified via X-ray diffraction technique, no structural variation was observed except lattice distortion. Size of the crystallites (D), morphology studied by SEM (scanning electron microscopy) analysis, nanoparticles (NPs) crystalized roughly flake-like morphology with homogeneous particle distribution centered at ~ 78 nm, ~56 nm, ~65 nm, ~88 nm for pure and Gd (x-1) doped Sr xO: CdO nanostructure, respectively. Fourier transform infrared spectroscopic investigation (FTIR) revealed the presence of Gd–O–Gd, Cd–O, Sr–O, and OH peaks appeared at ~1321 cm ?1, ~1550 cm ?1, ~1400 cm ?1–3300 cm ?1 with small variation in vibration modes due to Gd doping. Optical absorptivity observed in the range of 325 nm–359 nm (redshifted) with absorption edges at 346 nm, 364 nm, and 380 nm for Gd (x-1) doped Sr xO: CdO nanostructure, respectively. This redshift on the bandgap was discussed in terms of new band levels below conduction band. The energy gap was calculated using Kubelka-Munk theory and was found to be in the range of 3.22 eV–2.61 eV. X-ray photoelectron spectroscopy (XPS) performed to determine chemical composition and binding energies of Gd 3d 3/2, Sr 3d 3/2, and Cd 3d 3/2, O1s, and C1s observed at 150.8 eV, 141.6 eV, 411.0 eV, 530.4 eV, and 285.6 eV indicating Gd+3 ion replaces Sr+2 in all concentrations. Our results showed that Gd-doped Sr xO: CdO nanoparticles exhibited enhanced photoluminescence (PL) properties in contrast to the pure Gd2O3 with Gd+3 randomly incorporated into crystal structure, probably in tetrahedral sites. The composition of Gd 0.6 doped Sr x O: CdO NS exhibited photoluminescent emission spectra, peaks centered at 433 ± 3 nm, 449 ± 3 nm, and 469 ± 2 nm (λ excitation = 318 nm) and for Gd 0.8 doped Sr x O: CdO nanostructure showed broad emission peak at 412 ± 2 nm to 433 ± 2 nm (λ excitation = 380 nm), which indicates a reduction in defects with an increase in Gd doping. The transitions can be ascertained with shielding of 4f shells of Gd +3 ions by 6s, 5d shells by the interaction of other Gd +3 ions.  相似文献   

17.
插层法悬浮聚合制PMMA/蒙脱土纳米复合材料   总被引:30,自引:0,他引:30  
文献中蒙脱土的有机化处理一般采用一次插层法处理 ,本文采用了一种新的二次插层法 ,通过对一次插层法和二次插层法插层效果的比较 ,确定了二次插层法为一种理想的蒙脱土有机化方法 .经过MMA对蒙脱土插层的悬浮聚合 ,FT IR ,XRD和SEM等试验结果证明蒙脱土已经被有效地撑开 ,但发现蒙脱土的加入会降低聚合反应的转化率和聚合物的收率 ,悬浮聚合物颗粒的形态变得不规则 ,粒径也变大 .差热分析、溶解实验和应力 应变测试均表明蒙脱土的加入能提高PMMA的性能 ,蒙脱土的最佳用量在 3 %左右 .  相似文献   

18.
Novel epoxy‐clay nanocomposites have been prepared by epoxy and organoclays. Polyoxypropylene triamine (Jeffamine T‐403), primary polyethertriamine (Jeffamine T‐5000) and three types of polyoxypropylene diamine (Jeffamine D‐230, D‐400, D‐2000) with different molecular weight were used to treat Na‐montmorillonite (MMT) to form organoclays. The preparation involves the ion exchange of Na+ in MMT with the organic ammonium group in Jeffamine compounds. X‐ray diffraction (XRD) confirms the intercalation of these organic moieties to form Jeffamine‐MMT intercalates. Jeffamine D‐230 was used as a swelling agent for the organoclay and curing agent. It was established that the d001 spacing of MMT in epoxy‐clay nanocomposites depends on the silicate modification. Although XRD data did not show any apparent order of the clay layers in the T5000‐MMT/epoxy nanocomposite, transmission electron microscopy (TEM) revealed the presence of multiplets with an average size of 5 nm and the average spacing between multiplets falls in the range of 100 Å. The multiplets clustered into mineral rich domains with an average size of 140 nm. Scanning electron microscopy (SEM) reveals the absence of mineral aggregate. Nanocomposites exhibit significant increase in thermal stability in comparison to the original epoxy. The effect of the organoclay on the hardness and toughness properties of crosslinked polymer matrix was studied. The hardness of all the resulting materials was enhanced with the inclusion of organoclay. A three‐fold increase in the energy required for breaking the test specimen was found for T5000‐MMT/epoxy containing 7 wt% of organoclay as compared to that of pure epoxy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Nanocomposites based on biodegradable poly(?-caprolactone) organo-modified clay have been prepared by melt intercalation using a twin-screw extruder. The screw configuration developed allowed us to obtain an intercalated/exfoliated nanocomposite structure using a modified montmorillonite containing no polar groups, in contrast to previous work using mainly alkyl ammonium containing hydroxyl polar groups in poly(?-caprolactone). Montmorillonite nanocomposites were prepared using a specific extrusion profile from a 30 wt% masterbatch of organo-modified clay, which was then diluted at 1, 3 and 5%. Intercalated and/or exfoliated nanocomposites structures were assessed using rheological procedures and confirmed by transmission electron microscopy analysis. Mechanical and thermal properties were found to be strongly dependent on morphology and clay percentage. Crystallinity was only slightly affected by the clay addition. Effect of exfoliation on Young's modulus and thermal stability was investigated. Young's modulus increased significantly and onset degradation temperature measured by TGA was significantly reduced for an exfoliated nanocomposite composition containing 5 wt% organoclay.  相似文献   

20.
K2Al2B2O7 (KABO) is a new nonlinear optical crystal capable of laser harmonic generation in the UV range. However, abnormal UV absorption prevents its application in effectively generating UV light with wavelength shorter than 300 nm. The transmittance spectra of the grown crystals show distinct absorption bands at 216 nm and 264 nm. It is observed that the UV absorption is strongly correlated with iron impurity at a parts per million (ppm) level. Furthermore, electron paramagnetic resonance (EPR) spectra of the absorbing crystals show a strong signal at g = 2.00 position corresponding to a Fe3+ center. A new crystal growth method which reduces the iron content has been proposed and results show that the new KABO crystal is free from the Fe3+ UV absorptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号