共查询到20条相似文献,搜索用时 15 毫秒
1.
A rectangular open cavity with upstream dual injectors at a freestream Mach number of 1.9 was investigated experimentally. To evaluate the effect of the distance between the jets, the flow characteristics were investigated using the high-speed schlieren photography, particle image velocimetry, and surface oil flow techniques. The dual jet distances of 18 and 54 mm were used. Unstable flow occurs over the cavity in all cases and is not improved by changing the distance between the dual jets. Although the distance between the dual jets does not influence the flow stability, the flow field varies decidedly depending on the dual jets distance. The enhancement of air mixing depends on the distance between the jets. A long dual jets distance was found to yield better mixing characteristics within the cavity than a short one. When the jets are further apart, the mainstream between two counter-rotating vortex pairs behind the jets flows strongly into the cavity because of the increased blow-down occurring between the vortex pairs. Additionally, a counterflow with a low velocity magnitude occurs behind the jets. Hence, mixing is enhanced within the cavity by effects of the opposed flow. When the jet pairs are closer to each other, the counter-rotating vortex pairs are in contact; as a result, the blow-down effect does not occur between them. The flow drawn into the cavity from the mainstream is supplied from the sides of the test section into the cavity. 相似文献
2.
Characteristic flow modes, flow evolution processes, jet spread width, turbulence properties, and dispersion characteristics of swirling double-concentric jets were studied experimentally. Jet pulsations were induced by means of acoustic excitation. Streak pictures of smoke flow patterns, illuminated by a laser-light sheet, were recorded by a high-speed digital camera. A hot-wire anemometer was used to digitize instantaneous velocity instabilities in the flow. Jet spread width was obtained through a binary edge identification technique. Tracer-gas concentrations were measured for information on jet dispersions. Two characteristic flow patterns were observed: (1) synchronized vortex rings appeared in the low excitation intensity regime (the excitation intensity less than one) and (2) synchronized puffing turbulent jets appeared in the high excitation intensity regime (the excitation intensity greater than one). In the high excitation intensity regime, the “suction back” phenomenon occurred and therefore induced in-tube mixing. The jet spread width and turbulent fluctuation intensity exhibited particularly large values in the high excitation intensity regime at the excitation Strouhal numbers smaller than 0.85. At the excitation Strouhal numbers >0.85, the high-frequency effect caused significant decay of jet breakup and dispersion—the jet spread width and fluctuation intensity decreased sharply and may, at very high Strouhal numbers, asymptotically approach values almost the same as the values associated with unexcited jets. Exciting the jets at the high excitation intensity regime, the effects of puffing motion and in-tube mixing caused breakup of the jet in the near field and therefore resulted in a small Lagrangian integral time and small length scales of fluctuating eddies. This effect, in turn, caused drastic dispersion of the central jet fluids. It is possible that the excited jets can attain 90 % more improvements than the unexcited jets. We provide a domain regarding excitation intensity and Strouhal number to facilitate identification of characteristic flow modes. 相似文献
3.
An experimental study of particle velocities in micro-abrasive jets by using the particle image velocimetry (PIV) technique is presented. It has been found that the particle jet flow has a nearly linear expansion downstream. The particle velocities increase with air pressure, and the increasing rate increases with nozzle diameter within the range considered. The instantaneous velocity profile of the particle flow field in terms of the particle velocity distribution along the axial and radial directions of the jets is discussed. For the axial profile in the jet centerline downstream, there exists an extended acceleration stage, a transition stage, and a deceleration stage. For the radial velocity profiles, a relatively flat shape is observed at a jet cross-section near the nozzle exit. Mathematical models for the particle velocities in the air jet are then developed. It is shown that the results from the models agree well with experimental data in both the variation trend and magnitude. 相似文献
4.
Richard A. Truesdell J. W. Bartsch T. Buranda L. A. Sklar A. A. Mammoli 《Experiments in fluids》2005,39(5):819-827
Pulsatile action can be used to mix two streams entering a tube from two separate branches of a bifurcation at low Reynolds
numbers. The pulsatile action is provided by two pinch valves, which deform flexible tubing immediately upstream of the connection.
The pinch valve action is controlled using a master-slave pulse generator setup. The quality of mixing is evaluated directly
by measuring the fluorescence that results from the chemical reaction of species transported in the two streams, one containing
native biotin and the other, fluorescein biotin bound to streptavidin. The reaction kinetics are accounted for by normalization
using fluorescence measurements on well mixed solutions at the same residence time. The results show that the pulsatile micromixer
provides almost complete mixing. Furthermore, the present measurements match results obtained in a previous experiment where
flow visualization and image analysis were used to measure mixing quality in a scaled-up model. 相似文献
5.
A numerical study is performed on a two-dimensional confined opposed-jet configuration to gain basic understanding of the flow and mixing characteristics of pulsed turbulent opposed-jet streams. The sinusoidal pulsating flows with different temperature are imposed at opposed-jet inlets, which are mixed with each other in a confined flow channel. The current mathematical model taking the effect of temperature-dependent thermo-physical properties of fluid into account can present a good prediction for opposed-jet streams compared with experimental data. The numerical results indicate that introduction of temperature difference between opposed jet flows can lead to an asymmetric flow field immediately after jet impact, and the sinusoidal flow pulsations can effectively enhance mixing rate of opposed jets. Parameter studies are conducted for optimization of pulsed opposed jets. The effect of Reynolds number and flow pulsation as well as the configuration geometry on the mixing performance are discussed in detail. Examination of the flow and thermal field shows that the mixing rate is highly dependent on the vortex-induced mixing and residence time of jet fluid in the exit channel. 相似文献
6.
Flow pattern and flow characteristics for counter-current two-phase flow in a vertical round tube with wire-coil inserts 总被引:1,自引:0,他引:1
Flow pattern, void fraction and slug rise velocity on counter-current two-phase flow in a vertical round tube with wire-coil inserts are experimentally studied. Flow pattern and slug rise velocity are measured visually with a video camera. The void fraction is measured by the quick-closing valve method. Four kinds of coils with different coil pitches and coil diameters are used as inserts. The presence of wire-coil inserts induces disturbance into gas and liquid flows so that the shape and motion of gas slug or bubbles in a wire-coil inserted tube are quite different from those observed in a smooth tube without insert. The bubbly flow occurs in the low gas superficial velocity region in the wire-coil inserted tube, while the slug or churn/annular flow only appears in the smooth tube without insert over the all test range. The measured slug rise velocity in the wire-coil inserted tube is higher than that in the smooth tube. With modified mean flow velocity calculated with core area, the slug rise velocity in wire-coil tube inserted is in good agreement with Nicklin's correlation. The void fraction in a wire-coil inserted tube is lower than that in a smooth tube in the range of high gas superficial velocities. By introducing a simple assumption on considering the effective flowing area, the measured void fractions in a wire-coil inserted tube are in relatively good agreement with the predicted result based on the drift flux model proposed by others with the correlation for slug rise velocity given by others when the coil pitch is dense. 相似文献
7.
Dr. V. Sobolík 《Rheologica Acta》1994,33(2):136-144
The film thickness of pseudoplastic liquids flowing down a vertical wall can be decreased by the longitudinal oscillations of the wall. This phenomenon is treated in the term of the flow enhancement which is common in the flows in oscillating tube. The theoretical predictions of the flow rate enhancement are reviewed for the boundary layer and creeping flow regimes. The experiments were done in the transient regime between these two asymptotic regimes. As high as five-fold decrease of the film thickness, which corresponds to the flow rate enhancements 105, was measured with concentrated kaolin suspensions with the flow index 0.15. Empirical correlations which describe the flow rate enhancement and the film thickness of the liquids with the power law viscosity function in the transient regime were found. 相似文献
8.
9.
D. Middleton 《International Journal of Heat and Fluid Flow》1983,4(1):43-52
Because of practical application to jet pumps, ejectors, furnaces and similar devices, the turbulent discharge of a round jet into a coaxial duct and the mixing patterns in the various regions into which the flow may be divided, are of considerable interest. In this paper the mixing of an incompressible jet with a similar fluid in a cylindrical tube is considered up to the plane which marks the disappearance of potential flow. Under the assumption of similarity of velocity profile and with neglect of the wall boundary layer and nozzle wake, the continuity and momentum equations, in integral form, are solved for the velocities and mixing region radii at any given section. Prandtl's momentum transfer hypothesis may be used to determine the dependence of these on distance downstream. By examining the various flow regimes in detail this analysis is formally able to cover ratios of primary to secondary flow velocities of from one to infinity and, similarly, all ratios of duct to nozzle diameters, thereby extending earlier investigations. It also corrects work on similar basis in which inappropriate linearisations were made. The ‘exact’ results constitute a basis from which extension to include additional effects may be made. 相似文献
10.
11.
The turbulent flow structure and vortex dynamics of a jet-in-a-crossflow (JICF) problem, which is related to gas turbine blade film cooling, is investigated using the particle-image velocimetry (PIV) technique. A cooling jet emanating from a pipe interacts with a turbulent flat plate boundary layer at a Reynolds number Re∞ = 400,000. The streamwise inclination of the coolant jet is 30° and two velocity ratios (VR = 0.28, VR = 0.48) and two mass flux ratios (MR = 0.28, MR = 0.48) are considered. Jets of air and CO2 are injected separately into a boundary layer to examine the effects of the density ratio between coolant and mainstream on the mixing behavior and consequently, the cooling efficiency. The results show a higher mass flux ratio to enlarge the size of the recirculation region leading to a more pronounced entrainment of hot outer fluid into the wake of the jet. Furthermore, the lateral spreading of the coolant is strongly increased at a higher density ratio. The results of the experimental measurements are used to validate numerical findings. This comparison shows an excellent agreement for mean velocity and higher moment velocity distributions. 相似文献
12.
Thierry Mar Nicolas Galanis Ionut Voicu Jacques Miriel Ousmane Sow 《Experimental Thermal and Fluid Science》2008,32(5):1096-1104
Velocity vectors in a vertical coaxial double-duct heat exchanger for parallel ascending flow of water under conditions of laminar mixed convection have been determined experimentally using the particle image velocimetry technique. The measured velocity distributions for large annular flow rates, resulting in an essentially isothermal environment for the stream in the inner tube, are in very good agreement with corresponding numerical predictions. For flow rates of the same order of magnitude in the inner tube and the annulus, and corresponding temperature differences of about 20 °C, experimental observations show that flow reversal occurs simultaneously in both streams over large axial distances for both heating and cooling of the flow in the inner tube. 相似文献
13.
Displacements of a viscous fluid by a miscible fluid of a lesser viscosity and density in cylindrical tubes were investigated experimentally. Details of velocity and Stokes streamline fields in vertical tubes were measured using a DPIV (digital particle image velocimetry) technique. In a reference frame moving with the fingertip, the streamline patterns around the fingertip obtained from the present measurements confirm the hypothesis of Taylor (1961) for the external patterns, and that of Petitjeans and Maxworthy (1996) for the internal patterns. As discussed in these papers, the dependent variable, m, a measure of the volume of viscous fluid left on the tube wall after the passage of the displacing finger, is a parameter that determines the flow pattern. When m>0.5 there is one stagnation point at the tip of the finger; when
m<0.5 there are two stagnation points on the centerline, one at the tip and the other inside the fingertip, and a stagnation ring on the finger surface with a toroidal recirculation in the fingertip between the two stagnation points. The finger profile is obtained from the zero streamline of the streamline pattern.An erratum to this article can be found at 相似文献
14.
In gas–liquid stratified flows, pressure drop and transport across the interface are strongly influenced by the interfacial wave structure, making the determination of interfacial topography in this kind of flows very important. An objective way of characterizing the wave pattern present in the interface is proposed here. The method consists in analysing the spectra of the signal obtained from Laser Doppler Velocimetry (LDV) measurements of fluctuations occurring close to the air-sheared interface. Transitions are defined by the appearance and disappearance of peaks in the frequency spectra. The method was applied to study the transition regimes of a stratified air–water flow in a square-cross section channel. A flow pattern map for air–water channel flow is presented and compared with the maps available from the literature. 相似文献
15.
The effects of jet pulsation on flow field and quasi wall shear stress of an impingement configuration were investigated experimentally. The excitation Strouhal number and amplitude were varied as the most influential parameters. A line-array with three submerged air jets, and a confining plate were used. The flow field analysis by means of time resolved particle image velocimetry shows that the controlled excitation can considerably affect the near-field flow of an impinging jet array. These effects are visualized as organization of the coherent flow structures. Augmentation of the Kelvin–Helmholtz vortices in the jet shear layer depends on the Strouhal number and pulsation magnitude and can be associated with pairing of small scale vortices in the jet. A total maximum of vortex strength was observed when exciting with Sr = 0.82 and coincident high amplitudes.Time resolved interaction between impinging vortices and impingement plate boundary layer due to jet excitation was verified by using an array of 5 μm surface hot wires. Corresponding to the global flow field modification due to periodic jet pulsation, the impact of the vortex rings on the wall boundary layer is highly influenced by the above mentioned excitation parameters and reaches a maximum at Sr = 0.82. 相似文献
16.
17.
《中国颗粒学报》2008,6(6)
The mixing of particulates such as powders is an important process in many industries including pharmaceuticals, plastics, household products (such as detergents) and food processing. The quality of products depends on the degree of mixing of their constituent materials which in turn depends on both geometric design and operating conditions. Unfortunately, due to lack of understanding of the interaction between mixer geometry and the granular material, limited progress has been made in optimizing mixer design. The discrete element method (DEM) is a computational technique that allows particle systems to be simulated and mixing to be predicted. Simulation is an effective way of acquiring information on the performance of different mixers that is difficult and/or expensive to obtain using traditional experimental approaches. Here we demonstrate how DEM can be used to unravel flow dynamics and assess mixing in several different types of devices. These devices used for mixing and/or granulation of particulates, are classified broadly as gravity controlled, bladed and high shear. We also explore the role of particle shape in mixing performance and use DEM to test whether Froude number scaling is suitable for predicting scale performance of rotating mixers. 相似文献
18.
《Particuology》2018
A regular tetrahedron is the simplest three-dimensional structure and has the largest non-sphericity. Mixing of tetrahedral particles in a thin drum mixer was studied by the soft-sphere-imbedded pseudo-hard particle model and compared with that of spherical particles. The two particle types were simulated with different rotation speeds and drum filling levels. The Lacey mixing index and Shannon information entropy were used to explore the effects of sphericity on the mixing and motion of particles. Moreover, the probability density functions and mean values and variances of motion velocities, including translational and rotational, were computed to quantify the differences between the motion features of tetrahedra and spheres. We found that the flow regime depended on the particle shape in addition to the rotation speed and filling level of the drum. The mixing of tetrahedral particles was better than that of spherical particles in the rolling and cascading regimes at a high filling level, whereas it may be poorer when the filling level was low. The Shannon information entropy is better than the Lacey mixing index to evaluate mixing because it can reflect the real change of flow regime from the cataracting to the centrifugal regime, whereas the mixing index cannot. 相似文献
19.
The mixing of particulates such as powders is an important process in many industries including pharmaceuticals, plastics, household products (such as detergents) and food processing. The quality of products depends on the degree of mixing of their constituent materials which in turn depends on both geometric design and operating conditions. Unfortunately, due to lack of understanding of the interaction between mixer geometry and the granular material, limited progress has been made in optimizing mixer design. The discrete element method (DEM) is a computational technique that allows particle systems to be simulated and mixing to be predicted. Simulation is an effective way of acquiring information on the performance of different mixers that is difficult and/or expensive to obtain using traditional experimental approaches. Here we demonstrate how DEM can be used to unravel flow dynamics and assess mixing in several different types of devices. These devices used for mixing and/or granulation of particulates, are classified broadly as gravity controlled, bladed and high shear. We also explore the role of particle shape in mixing performance and use DEM to test whether Froude number scaling is suitable for predicting scale performance of rotating mixers. 相似文献
20.
The performance of an electrochemical process depends critically on the mobility of the reacting species or ions towards the electrode surface. In this work, a partitioned electrolytic cell is studied. Here the fluid flow is induced by gases which evolve at the electrode surface. The liquid circulation induced by the rising bubbles is primarily responsible for mixing. In this study, the liquid circulation in a cell where an alkaline solution of water is electrolyzed using different Nickel designs of electrodes is investigated using PIV. For each electrode, the optimum operating conditions such as voltage and concentration of electrolyte which resulted in good mixing are found. The flow-field is quantified by calculating time averaged velocity profiles along the horizontal line and by analyzing the temporal variation of liquid velocity at a point. It is found that there are differences in the circulation and hence vorticity in the two compartments, anode and cathode. The effect of gas evolution on mixing between the two chambers is studied by taking uric acid in the cathode half and NaOH in the anode half. The flow induced by the evolved gas bubbles leads to convective mixing in the two chambers. The mixing time is calculated by measuring the variation of current with time under potentiostatic conditions. This is verified by measuring the pH in anode and cathode compartments during the electrolysis. 相似文献