首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase morphology exerts a tremendous influence on the properties of polymer blends. The development of the blend morphology depends not only on the intrinsic structure of the component polymers but also on extrinsic factors such as viscosity ratio, shearing force and temperature in the melt processing. In this study, various poly (butylene adipate-co-terephthalate) (PBAT) materials with different melt viscosity were prepared, and then poly (lactic acid) (PLA)/PBAT blends with different viscosity ratio were prepared in a counter-rotating twin-screw extruder under constant processing conditions. The influence of viscosity ratio on the morphology, mechanical, thermal and rheological properties of PLA/PBAT (70/30 w/w) blends was investigated. The experimental results showed that the morphology and properties of PLA/PBAT blends strongly depended on the viscosity ratio. Finer size PBAT phase were observed for viscosity ratio less than 1 (λ < 1) compared to samples with λ > 1. It was found that the interfacial tensions of PLA and PBAT were significantly different when the viscosity ratio was changed, the lowest interfacial tensions (0.12 mN/m) was obtained when the viscosity was 0.77. Additionally, the maximal tensile strength in PLA/PBAT blends were obtained when the viscosity ratio was 0.44, while the maximal impact properties were obtained when the viscosity ratio was 1.95.  相似文献   

2.
Poly(lactic acid), PLA, was chemically modified with maleic anhydride (MA) by reactive extrusion. The effect of this modification on molar mass (MM) and acidity was assessed by means of size-exclusion chromatography (SEC) and titration, respectively. PLA MM decreased in the presence of MA solely and of MA and peroxide. Reduction in MM was monitored by the increase in acidity. PLA blends containing poly(butylene adipate-co-terephthalate) (PBAT) were prepared through different mixing protocols, PLA/PBAT, PLA-g-MA/PBAT and PLA/PBAT/MA/peroxide (PLA/PBAT in situ). SEC results and rheological properties revealed reduction in MM and viscosity of the modified blends. PLA/PBAT presented increase in MM and bimodal MM distribution. The calculated interfacial tension was significantly lower for the modified blends, despite the lower average particle area of PLA/PBAT. Surprisingly, the modified blends presented higher yield strength than that predicted by the rule of mixtures, which might indicate interfacial reactions.  相似文献   

3.
The effect of montmorillonite clay (MMT) and/or chain extender (CE) on rheological, morphological and biodegradation properties of PLA/PBAT blend was investigated. The biodegradation behavior was evaluated by CO2 evolution in soil burial. CE incorporation resulted in an increase in the complex viscosity of PLA/PBAT blends, an increase in PLA crystallinity and a decrease in the dispersed phase diameter. MMT incorporation resulted in an increase in the complex viscosity, more pronounced shear-thinning behavior and a decrease in the dispersed phase diameter. CE incorporation resulted in a slight effect in the rheological properties of PLA/PBAT blend in the presence of MMT. Unfilled PLA/PBAT blend presented the highest amount of evolved CO2, and the micrographs indicated that degradation tends to occur on the surface. MMT delayed biodegradation of PLA/PBAT blends even although their surfaces presented some cracks and holes in a few localized regions. PLA/PBAT + CE blend presented the lowest amount of evolved CO2.  相似文献   

4.
Novel blends were prepared from biobased poly(trimethylene terephthalate) (PTT) and poly(butylene adipate‐co‐terephthalate) (PBAT) using a twin screw extrusion process as a function of different weight ratios. Thermal stability, mechanical, and interfacial properties of PTT/PBAT blends were investigated using a thermogravimetric analyzer and mechanical analyzer. Phase behavior and surface morphology of the blends were characterized using scanning electron microscopy. Interfacial bonding value of the PTT/PBAT blend was evaluated from the Pukanszky empirical relationship. Viscoelastic properties of PTT/PBAT blends were investigated using the dynamic mechanical analyzer. PTT/PBAT blend exhibited higher thermal stability than the neat PTT matrix. The entire blend showed better interfacial adhesion between the matrixes. Storage and loss modulus of the PTT/PBAT blend reduces with increasing PBAT content. PTT/PBAT blend exhibited higher impact energy than the neat PTT matrix, because of its flexible and amorphous nature of PBAT polymer and increasing toughness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Mechanical, morphological and rheological properties of polycarbonate (PC) and poly (lactic acid) (PLA) blends with compatibilizers have been investigated. Three types of compatibilizers were used: poly(styrene-g-acrylonitrile)-maleic anhydride (SAN-g-MAH), poly(ethylene-co-octene) rubber-maleic anhydride (EOR-MAH) and poly(ethylene-co-glycidyl methacrylate) (EGMA). The maximum value of the mechanical properties such as impact and tensile strengths of the PC/PLA (70/30, wt%) blend before or after hydrolysis was observed when the SAN-g-MAH was used as a compatibilizer at the amount of 5 phr. From the interfacial tension between PC and PLA which was determined from the weighted relaxation spectra using Palierne emulsion model, minimum value of interfacial tension (0.08 mN/m) was observed when the SAN-g-MAH (5 phr) was used. From the morphological studies of the PC/PLA (70/30) blends, the PLA droplet size showed minimum (0.19 μm) at the 5.0 phr SAN-g-MAH. From the results of mechanical, morphological and rheological properties of the PC/PLA (70/30) blend, it is suggested that the SAN-g-MAH is the most effective compatibilizer to improve the mechanical strength of the PC/PLA (70/30) blends among the compatibilizers used in this study, especially at the amount of 5 phr.  相似文献   

6.
This work presents the investigation of properties of polyamide‐6 (PA‐6)/ethylene vinyl alcohol (EVOH)/styrene‐ethylene‐butylene‐styrene (SEBS) ternary blends and related nanocomposites with nanoclays. In this way, the effect of the mixing protocol and nanoclay type on the morphology, mechanical, and rheological properties of the blends was comprehensively studied. Scanning electron microscopy (SEM) observation revealed that, for the neat ternary blends, core‐shell droplets were formed in which SEBS droplets were encapsulated by EVOH phase in the PA‐6 matrix. In this regard, experimental observations were compared and discussed with the predictions of phenomenological models. According to the X‐ray diffraction analysis, the distribution and degree of dispersion of the nanoclays were significantly influenced by mixing protocol. It was demonstrated that competition between the intrinsic effect of the nanoclay on the physical properties and its inhibiting effect on the interactions between PA‐6 and EVOH phases led to some interesting observations for the rheological and mechanical properties of the ternary blends. The results revealed that optimum properties could be obtained by selecting appropriate nanoclay and mixing protocol.  相似文献   

7.
In this work blends of poly(ethylene-co-vinyl alcohol) (EVOH) with different ethylene contents (27, 32, 38 and 44 mol%) and poly(methyl methacrylate) (PMMA) were prepared by mechanical mixing in the melted state. The miscibility and melting behavior as a function of blend composition and the ethylene content in EVOH copolymers were investigated by means of differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The morphology of the cryofractured surfaces was examined by scanning electron microscopy (SEM). DSC and DMTA data show that EVOH/PMMA blends are immiscible, independent of EVOH and blend composition. The SEM analysis in agreement with DMTA analysis indicates that the morphology of phases depends on the blend composition, with phase inversion occurring as the concentration of one or other polymer component increases. However, the copolymer composition apparently does not affect the domain size distribution for blends containing 20 wt% of EVOH or 20 wt% of PMMA. A better phase adhesion is observed mainly for blends with 50 wt% of each polymer component.  相似文献   

8.
The breaking thread and the sessile drop methods have been used to evaluate the interfacial tension between a polypropylene (PP) and a polyethylene-terephthalate (PET). An excellent correlation was found between the two. The breaking thread technique was then used to evaluate the interfacial tension of these blends at various levels of a styrene-ethylene butylene-styrene grafted with maleic anhydride (SEBS-g-MA) compatibilizer. In order to evaluate the relative roles of coalescence and interfacial tension in controlling dispersed phase size reduction during compatibilization, the morphology of PP/PET 1/99 and 10/90 blends compatibilized by a SEBS-g-MA were studied and compared. The samples were prepared in a Brabender mixer. For the 10/90 blend, the addition of the compatibilizer leads to a typical emulsification curve, and a decrease in dispersed phase size of 3.4 times is observed. For the 1/99 blend, a 1.7 times reduction in particle size is observed. In the latter case, this decrease can only be attributed to the decrease of the interfacial tension. It is evident from these results that the drop in particle size for the 10/90 PP/PET blend after compatibilization is almost equally due to diminished coalescence and interfacial tension reduction. These results were corroborated with the interfacial tension data in the presence of the copolymer. A direct relationship between the drop in dispersed phase size for the 1/99 PP/PET blend and the interfacial tension reduction was found for this predominantly shear mixing device. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2271–2280, 1997  相似文献   

9.
The interfacial crosslinking reaction in molten blends of two functionalized ethylene copolymers was followed by rheological measurements. The blends were directly prepared in the rheometer. Due to the low melting temperature of the blend components, it was possible to carry out separately the mixing by steady shearing at low temperature, and the interfacial reaction followed by small amplitude dynamic measurements at higher temperatures. The influence of several parameters on the interfacial reaction was studied: the reaction temperature, the amount of shear during mixing, the blend composition and the compatibility and reactivity of the blend components.  相似文献   

10.
The aim of the present study was to improve the compatibility in blends of natural rubber (NR) and polyamide 12 (PA12) by grafting NR with hydrophilic monomer, diacetone acrylamide (DAAM), via seeded emulsion polymerization. The increase in polarity of NR after grafting modification was confirmed by a considerable increase in the polar component of its surface energy. Blends of graft copolymers of NR and poly(diacetone acrylamide) prepared using 10 wt% of DAAM (NR‐g‐PDAAM10) and PA12 were prepared at a 60/40 blend ratio (wt%) using simple blend and dynamic vulcanization techniques. The mechanical and rheological properties of the resulting blends were subsequently investigated and compared with those of the corresponding blends based on unmodified NR. The results show that dynamic vulcanization led to a significant increase in both mechanical and rheological properties of the blends. It was also observed that the dynamically cured NR‐g‐PDAAM10/PA12 blend had smaller particle size of vulcanized rubber dispersed in the PA12 matrix than observed for the dynamically cured NR/PA12 blend. This is due to the compatibilizing effect of DAAM groups present in NR‐g‐PDAAM10 molecule, which decreases the interfacial tension between the two polymeric phases. Therefore, it can be stated that the interfacial adhesion between NR and PA12 was improved by the presence of DAAM groups in NR molecule. This was reflected in the higher tensile properties observed in the dynamically cured NR‐g‐PDAAM10/PA12 blend. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The linear viscoelastic properties of polystyrene polyethylene (PS/PE) blends have been investigated in the molten state. For concentrations of the dispersed phase equal to 30 vol %, the blends exhibited a droplet‐matrix morphology with a volume‐average diameter of 5.5 μm for a 70/30 PS/PE blend at 200 °C and 14.7 μm for a 30/70 PS/PE blend at 230 °C. Enhanced elasticity (G′) for both blends, in the terminal zone, compared to the modulus of the matrix (PS and PE, respectively) was observed. This is related to the deformation of the droplets in the matrix phase and hence to the interfacial forces between the blend components. The results for these uncompatibilized blends are shown to be in agreement with the predictions of the emulsion model of Palierne. These predictions were used to obtain the interfacial tension between PS and PE, which was found to be between 2 and 5 mN/m at 200 °C and 4 ± 1 mN/m at 230 °C. Independent interfacial tension measurements using the breaking‐thread method resulted in a value of 4.7 mN/m and 4.1 mN/m at 200 °C and 230 °C for the respective blends. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1359–1368, 2000  相似文献   

12.
Interfacial tension is a very important material parameter in two‐phase polymer blends. It determines the morphology development during processing, which is crucial for the end‐use properties of the material. Although different techniques for interfacial tension measurement give comparable results for immiscible polymers, the determination of the interfacial tension in lower critical solution temperature blends is not straightforward. This is illustrated for poly(α‐methyl styrene acrylonitrile)/poly(methyl methacrylate)(PαMSAN/PMMA), a slightly incompatible polymer pair. Interfacial tension has been measured with three different techniques: small‐amplitude oscillatory shear, recovery after elongation, and elongation of a multilayer sample. The large differences in these results can be attributed to the fact that most experimental techniques determine an apparent value, rather than the thermodynamic equilibrium value, of the interfacial tension. The latter is only obtained if the measurement is performed under quiescent conditions on a system that is composed of the coexisting PαMSAN‐rich and PMMA‐rich phases. The apparent interfacial tension depends on the actual composition of the phases and on the deformation of the interface. An order of magnitude approximation for such effects has been derived from theoretical considerations. Finally, each of these apparent values can be of practical importance. If a blend is prepared by melt mixing of the pure polymers, a high apparent value of interfacial tension should be considered. If, however, a blend is prepared by phase separation of a homogeneous mixture, the thermodynamic value is important. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 679–690, 2002  相似文献   

13.
The deformation of dispersed droplets of a thermotropic liquid crystalline polymer in a polyamide (nylon 6) matrix was studied by morphological observation. An immiscible binary blend and compatibilized ternary blends were studied. For the uncompatibilized blend, the morphology of the blends was that of a typical immiscible blend showing poor adhesion and no deformation of the dispersed phase. For the compatibilized blend, deformation of the dispersed TLCP phase was observed even if the viscosity of the matrix was lower than that of the TLCP phase. Compatibilizer addition improved the interfacial adhesion, hence enabled TLCP droplets to be deformed. A simple mechanism for the deformation of TLCP droplets was presented considering characteristic rheological properties of the TLCP melt.  相似文献   

14.
熔融共混制备了不同组分比的聚乳酸(PLA)/乙烯-醋酸乙烯酯共聚物(EVA)共混物,采用扫描电子显微镜(SEM)、溶剂选择性蚀刻和旋转流变仪研究了共混物不相容的相形态及其黏弹响应.研究结果表明,PLA/EVA共混物为典型的热力学不相容体系,两基体组分间的界面张力约为2.2 mN/m;因此随组分比的不同,共混物表现出"海-岛"分散和双连续的不相容相形态;体系中EVA的相反转浓度约为50 wt%~60 wt%,这与黏性模型对相反点预测的结果一致;与双连续相形态的体系相比,乳液模型能够更好的描述具有"海-岛"分散形态的体系的线性黏弹响应,共混体系相对较宽的相反转区域主要源于两组分间较大的弹性比以及EVA自身的屈服行为.  相似文献   

15.
The strength of interaction between tin phosphate glass (PGlass) filler droplets and an ethylene‐vinyl alcohol (EVOH) matrix were investigated by image, thermal, and rheological analysis. 10% PGlass droplets in EVOH were smaller than those previously observed in maleated polypropylene. Analysis using the Fox equation showed that EVOH/97 °C Tg PGlass composites are not miscible systems. Dynamic shear and extensional rheology data of those composites exhibited a weak physical network, with relaxation times longer than that of pure EVOH at all strain rates. The tensile properties of the EVOH/10 vol % PGlass composite showed it to be more ductile and flexible than a typical polymer/inorganic filler system, supporting interaction between PGlass and EVOH sufficient to interrupt polymer–polymer hydrogen bonding. While undrawn EVOH/PGlass composite films showed increased oxygen gas permeability when compared to undrawn neat EVOH film, the drawn composite films exhibited oxygen permeability 6–7 times lower than that of neat EVOH, attributed to the presence of high aspect ratio PGlass particles after orientation. The concept of hydrogen bonding between polymer and PGlass can likely be applied to other polymers such as polyamides which possess numerous hydrogen bonding sites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 989–998  相似文献   

16.
In a blend, the interfacial interaction between the component phases can be effectively utilized to bring about homogeneous mixing and unique performances. While in conventional blends, preserving the morphology of the melt mixed state is unfeasible because of the strong thermodynamic tendency of the components to phase separate, herein, we report the intermolecular interaction of two hydrogen bonded polymers such as a barrier polymer poly(ethylene-co-vinyl alcohol) (EVOH) with an ionic polymer in their blends, which work symbiotically to achieve the desirable characteristics. We demonstrate the creation of a unique ellipsoid microfibrilliar morphology and melt exfoliation of one polymer in the blends through intermolecular interaction and achieve high oxygen barrier characteristics. Scanning thermal microscopy and scanning electron microscopy investigations confirm the presence of such unique morphology. The interfacial interaction and formation of interphase was evident from the local thermal analysis results combined with photoacoustic Fourier transform infrared spectroscopy (PA-FTIR). PA-FTIR confirms the chemical nature of the interaction, while the differential scanning calorimetry results indicate modification of the EVOH phase by the ionomer. The shift of Tg and broadening of the tan delta curve is evident from dynamic mechanical analysis confirming the interaction of the blend components. The blend B(60) with microfibrillar morphology shows fourfold drop in oxygen permeability indicating the role of interfacial interaction and desired morphology.  相似文献   

17.
This work studies continuity development and cocontinuity in high viscosity ratio EPDM/PP blends. A very low interfacial tension (0.3 mN/m) between the blend components together with high viscosity ratios (11 and 17) result in a variety of unusual morphological features, including isolated nanometer diameter fibers, very large particles, partially coalesced particles, and numerous particles interconnected by fibers. This unique combination of morphologies leads the blend to a novel and stable cocontinuous structure of partially coalesced particles and particles interconnected by fibers. Compared with low to medium viscosity ratio EPDM/PP blends, these cocontinuous networks demonstrate early percolation thresholds, rapid continuity development, and attain cocontinuity at lower compositions of minor phase. The slow surface erosion of the high viscosity EPDM phase during melt blending is shown to be responsible for the generation of these unusual morphological structures. Typically the timescale for erosion phenomena are so small that they have defied study in the mixing environment itself and typical blend morphology studies almost always examine the final steady‐state morphology obtained after several minutes of mixing. The combination of very low interfacial tension and very high viscosity ratios of these EPDM/PP systems provide a unique opportunity to examine erosion phenomena persisting over longer time scales during melt mixing. We propose a new concentration‐dependant erosion mechanism that is based on particle collision–coalescence–separation dynamics. The proposed conceptual mechanism is shown to dramatically accelerate the erosion process and maintain cocontinuity over prolonged periods of mixing. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1919–1929, 2006  相似文献   

18.
研究了聚烯烃高分子共混物的初始相形态及相间界面张力的改变对退火热处理条件下共混物分散相尺寸分布梯度形态形成速度的影响.通过控制共混物共混过程中Brabender转子的转速来控制共混物所受的剪切力大小,可达到控制共混物初始相形态的目的.通过SEM电镜观察相形态,并利用计算机图象分析仪得到分散粒子的粒径及其分布数据.研究结果表明,转子转速越大,即共混物所受的剪切力越大,分散相初始粒径越小,且分散也越均匀.初始粒径较小的样品退火后形成梯度的速度相对较快.选用体系聚丙烯(PP)/乙烯 醋酸乙烯酯共聚物(EVAc)、聚乙烯(PE)/EVAc及改变EVAc中的醋酸乙烯酯(VAc)含量与PE共混对比研究了不同相界面张力对梯度化速度的影响.结果表明,上述各体系退火热处理后均可形成梯度相形态,且相间界面张力越大.高分子共混物中梯度相形态形成速度也越快  相似文献   

19.
Polypropylene was blended with polybutadiene in an internal mixer in order to improve its toughness. The rubber content ranged from 10 to 20 wt. % and dicumyl peroxide (DCP) was added to provide required radicals for dynamic crosslinking of polybutadiene, and for in-situ compatibilization of the phases. This was done using two sequences of mixing. In addition, zinc dimethacrylate was utilized as a co-agent to control chain scission of PP, enhance the interfacial reactions and increase compatibility of the components. In obtaining the optimum blend, the Taguchi orthogonal experimental design was applied and results of Izod impact strength test were concordantly related to crystallinity of the polypropylene, morphology of the blends and reactions that may occur. The impact strength was increased about four times at best in comparison to the neat polypropylene, showing versatility of this way of toughening which may be improved further.  相似文献   

20.
In this paper, the influence of rubber particle size on the phase interface in dynamically vulcanized poly(vinylidene fluoride)/silicone rubber (PVDF/SR) blends without any modifier is discussed through the studies of specific surface of crosslinked SR particles, crystallization behavior and crystal morphology of the PVDF phase, interfacial crystallization, melt rheological behavior and mechanical properties of blends. A series of decreased average particle size was successfully obtained by control of rotor rate. It was found that properly high rotor rate helped to achieve a reduced particle size and a narrowing size distribution. The reduced SR particle size enlarged the PVDF/SR interface which has a positive effect on the interfacial crystallization and the melt rheological behavior. At high SR content, the negative effect of the poor interface interactions played the dominate role on determining the mechanical properties. However, the blend exhibited a unique stiffness-toughness balance at the PVDF/SR = 90/10. We hope that the present study could help to lay a scientific foundation for further design of a useful PVDF/SR blend with promoted properties to partly replace the high-cost synthetic fluorosilicone materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号