首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
环形通道内湍流旋流流动的数值模拟   总被引:1,自引:0,他引:1  
张健 N  eh  S 《计算力学学报》2000,17(1):14-21
本文应用一种考虑湍流-旋流相互作用及湍流脉动各向异性的新的代数Reynolds应力模型,对环形通道内的湍流旋流流动进行了数值模拟,研究了改主为旋流流数,进口轴向速度及半径比等参数对环形通道内湍流流动的影响,以及对强化环形通道内传热的作用。  相似文献   

2.
An improved anisotropic model for the dissipation rate—ε—of the turbulent kinetic energy (k), to be used together with a non‐linear pressure‐strain correlations model, is proposed. Experimental data from the open literature for two confined turbulent swirling flows are used to assess the performance of the proposed model in comparison to the standard ε transport equation and to a linear approach to model the pressure‐strain term that appears in the exact equations for the Reynolds‐stress tensor. For the less strongly swirling flow the predictions show much more sensitivity to the εtransport equation than to the pressure‐strain model. In opposition, for the more strongly swirling flow, the results show that the predictions are much sensitive to the pressure‐strain model. Nevertheless, the improved εtransport equation together with the non‐linear pressure strain model yield predictions in good agreement with experiments in both studied cases. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
4.
For modeling the molecular transfer of a passive scalar in a known turbulent field, the equations for the average scalar value and the correlation function for the scalar field are written in a form which makes it possible to examine the effect of molecular transfer on turbulent transfer and scalar dissipation. For the closure of the equation for the correlation function, the Prandtl hypothesis is used. The statistical reliability of this closure is demonstrated. The system proposed makes it possible to predict the dynamics of a decaying uniform scalar field and to explain why the effect of the real value of the molecular-transfer coefficient on the decaying scalar field is weak. Specific features of the transport process in a plane layer with prescribed scalar values on the layer boundaries are considered.  相似文献   

5.
6.
The parameters of an axisymmetric turbulent two-phase swirling flow of a viscous heat-conducting gas containing a liquid dispersed phase in the presence of water vapor condensation on the particles are calculated. For the dispersed phase, a model taking into account the variation of the vapor concentration and the particle size due to condensation or evaporation is proposed. The distributions of the parameters of the basic unperturbed flow obtained numerically are used in the numerical solution of the linear problem of hydrodynamic stability within the time-dependent formulation. The parameters of small-amplitude harmonic perturbations propagating along the vortex axis are investigated in the linear formulation. A significant effect of heat release in the gas due to water vapor condensation on the parameters of the neutral perturbations and the neutral-stability curves is detected.  相似文献   

7.
Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combustion model, and also by RANS modeling using the Reynolds Stress equation model with the IPCM+wall and IPCM pressure-strain models and SOM combustion model. The LES statistical results for swirling flows give good agreement with the experimental results, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. The LES instantaneous results show the complex vortex shedding pattern in swirling flows. The initially formed large vortex structures soon break up in swirling flows. The LES statistical results of combustion modeling are near the experimental results and are as good as the RANS-SOM modeling results. The LES results show that the size and range of large vortex structures in swirling combustion are different from those of isothermal swirling flows, and the chemical reaction is intensified by the large-eddy vortex structures. The project supported by the Special Funds for Major State Basic Research (G-1999-0222-07). The English text was polished by Keren Wang.  相似文献   

8.
This first segment of the two‐part paper systematically examines several turbulence models in the context of three flows, namely a simple flat‐plate turbulent boundary layer, an axisymmetric separating flow, and a swirling flow. The test cases are chosen on the basis of availability of high‐quality and detailed experimental data. The tested turbulence models are integrated to solid surfaces and consist of: Rodi's two‐layer kε model, Chien's low‐Reynolds number kε model, Wilcox's kω model, Menter's two‐equation shear‐stress‐transport model, and the one‐equation model of Spalart and Allmaras. The objective of the study is to establish the prediction accuracy of these turbulence models with respect to axisymmetric separating flows, and flows of high streamline curvature. At the same time, the study establishes the minimum spatial resolution requirements for each of these turbulence closures, and identifies the proper low‐Mach‐number preconditioning and artificial diffusion settings of a Reynolds‐averaged Navier–Stokes algorithm for optimum rate of convergence and minimum adverse impact on prediction accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
On the eddy viscosity model of periodic turbulent shear flows   总被引:4,自引:0,他引:4  
Physical argument shows that eddy viscosity is essentially different from molecular viscosity. By direct numerical simulation, it was shown that for periodic turbulent flows, there is phase difference between Reynolds stress and rate of strain. This finding posed great challenge to turbulence modeling, because most turbulence modeling, which use the idea of eddy viscosity, do not take this effect into account. The project supported by the National Natural Science Foundation of China (19732005) and Liu Hui Center for Applied Mathematics of Nankai & Tianjin University  相似文献   

10.
气固两相流中颗粒弥散的拉格朗日模拟   总被引:2,自引:1,他引:1  
本文提出了一种对于均匀,稳定及各向同性气固两相紊流场中圆形固体颗粒弥散的拉格朗日模拟计算方法,应用该方法对带有网栅的垂直与水平管道中均匀,稳定的气固两相流模拟计算结果与Snyder及Wells等人所做的相同情况下的试验结果进行了比较,以证明该模拟计算方法的有效性,。  相似文献   

11.
Particle fluctuation and gas turbulence in dense gas-particle flows are less studied due to complexity of the phenomena. In the present study, simulations of gas turbulent flows passing over a single particle are carried out first by using RANS modeling with a Reynolds stress equation turbulence model and sufficiently fine grids, and then by using LES. The turbulence enhancement by the particle wake effect is studied under various particle sizes and relative gas velocities, and the turbulence enhancement is found proportional to the particle diameter and the square of velocity. Based on the above results, a turbulence enhancement model for the particle-wake effect is proposed and is incorporated as a sub-model into a comprehensive two-phase flow model, which is then used to simulate dilute gas-particle flows in a horizontal channel. The simulation results show that the predicted gas turbulence by using the present model accounting for the particle wake effect is obviously in better agreement with the experimental results than the prediction given by the model not accounting for the wake effect. Finally, the proposed model is incorporated into another two-phase flow model to simulate dense gasparticle flows in a downer. The results show that the particle wake effect not only enhances the gas turbulence, but also amplifies the particle fluctuation.  相似文献   

12.
Three dimensional large eddy simulation (LES) is performed in the investigation of stably stratified turbulence with a sharp thermal interface. Main results are focused on the turbulent characteristic scale, statistical properties, transport properties, and temporal and spatial evolution of the scalar field. Results show that the buoyancy scale increases first, and then goes to a certain constant value. The stronger the mean shear, the larger the buoyancy scale. The overturning scale increases with the flow, and the mean shear improves the overturning scale. The flatness factor of temperature departs from the Gaussian distribution in a fairly large region, and its statistical properties are clearly different from those of the velocity fluctuations in strong stratified cases. Turbulent mixing starts from small scale motions, and then extends to large scale motions.  相似文献   

13.
An experimental investigation on swirl effects on inhomogeneous confined jet mixing in a combustor configuration is reported. The confined swirling flow was simulated by a swirler with a central jet mounted in a cyclindrical tube. Helium and air jets set at different velocities were injected into the confined swirling air flow. The resulting flow fields due to two vane swirlers with constant vane angles of 35° and 66° were compared. Results show that the 35° vane swirler produces a solid-body rotation core with a slope about twice that created by the 66° vane swirler. It is the behavior of this solid-body rotation core that determines jet mixing rather than the swirler vane angle. Consequently, the coaxial jet decays much faster, the mixing is more intense, and the turbulence intensities are higher for the 35° vane swirler. In view of these results, combustor designers should be more concerned with behavior of the solid-body rotation core produced by the swirler, instead of the swirler vane angle.  相似文献   

14.
An investigation on the predictive performance of four cubic eddy‐viscosity turbulence models for two strongly swirling confined flows is presented. Comparisons of the prediction with the experiments show clearly the superiority of cubic models over the linear k–εmodel. The linear k–εmodel does not contain any mechanism to describe the stabilizing effects of swirling motion and as a consequence it performs poorly. Cubic models return a lower level of Reynolds stresses and the combined forced‐free vortex profiles of tangential velocity close to the measurements in response to the interaction between swirl‐induced curvature and stresses. However, a fully developed rotating pipe flow is too simple to contain enough flow physics, so the calibration of cubic terms is still a topic of investigation. It is shown that explicit algebraic stress models require fewer calibrations and contain more flow physics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Gas-particle two-phase turbulent flow in a vertical duct   总被引:5,自引:0,他引:5  
Two-phase gas-phase turbulent flows at various loadings between the two vertical parallel plates are analyzed. A thermodynamically consistent turbulent two-phase flow model that accounts for the phase fluctuation energy transport and interaction is used. The governing equation of the gas-phase is upgraded to a two-equation low Reynolds number turbulence closure model that can be integrated directly to the wall. A no-slip boundary condition for the gas-phase and slip-boundary condition for the particulate phase are used. The computational model is first applied to dilute gas-particle turbulent flow between two parallel vertical walls. The predicted mean velocity and turbulence intensity profiles are compared with the experimental data of Tsuji et al. (1984) for vertical pipe flows, and good agreement is observed. Examples of additional flow properties such as the phasic fluctuation energy, phasic fluctuation energy production and dissipation, as well as interaction momentum and energy supply terms are also presented and discussed.

Applications to the relatively dense gas-particle turbulent flows in a vertical channel are also studied. The model predictions are compared with the experimental data of Miller & Gidaspow and reasonable agreement is observed. It is shown that flow behavior is strongly affected by the phasic fluctuation energy, and the momentum and energy transfer between the particulate and the fluid constituents.  相似文献   


16.
The fully developed turbulent flows over wavy boundaries are investigated by means of thek-ε model. Predicted flow characteristics over rigid wavy walls are in good agreement with the vailable experimental data. Moreover drag reduction has been found in a 2-dimensional channel with periodical wavy walls. The energy input from turbulent wind to regular waves is also studied in the paper by the same turbulence model with carefully posed boundary conditions at wind-wave interface. Better agreement has been obtained in the predication of the growth rates of wind waves as compared with the previous theoretical and numerical results. The project supported by the National Natural Science Foundation of China.  相似文献   

17.
An investigation on the predictive performance of cubic eddy‐viscosity turbulence models for strongly swirling confined flows with variable density is presented. Comparisons of the prediction with the experiments show some improvements of cubic models over the linear k–ε model. The linear k–ε model does not contain any mechanism to represent the interaction of swirl and density variation and as a consequence it performs poorly. With appropriate modelling, two‐equation cubic turbulence models can capture the subcritical nature of the flow, represent the azimuthal velocity profiles of combined forced‐free vortex motion, and predict the combined effects of swirl and density variation fairly well. However, the calibration of model coefficients is still a topic of investigation. Further amendments are also needed for the equations of k and ε to take into account the effects of swirl and density gradients correctly. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A two-fluid particle-wall collision model with consideration of wall roughness is proposed. It takes into account the effects of the friction, restitution and in particular the wall roughness, and hence the redistribution of Reynolds stress in different directions, the absorption of turbulent energy from the mean motion and the attenuation of particle motion by the wall. The proposed model is used to simulate sudden-expansion and swirling gas-particle flows and is validated by comparing with expermental results. The results show that the proposed model gives better results than those obtained by the presently used zero-gradient condition. Hence, it is suggested that the proposed model should be used as the wall boundary condition for the particle phase in place of the presently used boundary condition. The project supported by the Special Funds for the Major State Basic Research, China (G-1999-0222-08)  相似文献   

19.
An approximate equation governing the turbulent fluid velocity encountered along discrete particle path is used to derive the fluid/particle turbulent moments required for dispersed two-phase flows modelling. Then, closure model predictions are compared with results obtained from large-eddy simulation of particle fluctuating motion in forced isotropic fluid turbulence.  相似文献   

20.
This paper analyses the influence of the inlet swirl on the structure of incompressible inviscid flows in pipes. To that end, the inviscid evolution along a pipe of varying radius with a central body situated inside the pipe is studied for three different inlet swirling flows by solving the Bragg–Hawthorne equation both asymptotically and numerically. The downstream structure of the flow changes abruptly above certain threshold values of the swirl parameter (L). In particular, there exist a value Lr above which a near-wall region of flow reversal is formed downstream, and a critical value Lf above which the axial vortex flow breaks down. It is shown that the dependence upon the pipe geometry of these critical values of the swirl parameter varies strongly with the inlet azimuthal velocity profile considered. An excellent agreement between asymptotic and numerical results is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号