首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1999, Faraoni wrote a simple second-order linear differential equation for FRW cosmologies with barotropic fluids. His results have been extended by Rosu, who employed techniques belonging to nonrelativistic supersymmetry to obtain time-dependent effective adiabatic indices. Further extensions are presented here using the known connection between the linear second-order differential equations and Dirac-like equations in the same supersymmetric context. These extensions are equivalent to adding an imaginary part to the effective adiabatic index, which is proportional to the mass parameter of the Dirac spinor. The natural physical interpretation of the imaginary part is related to the particular dissipation and instabilities of the effective barotropic FRW hydrodynamics that are introduced by means of this supersymmetric scheme.  相似文献   

2.
We formulate a mathematical model for the daily activities of a cow (eating, lying down, and standing) in terms of a piecewise linear dynamical system. We analyze the properties of this bovine dynamical system representing the single animal and develop an exact integrative form as a discrete-time mapping. We then couple multiple cow “oscillators” together to study synchrony and cooperation in cattle herds. We comment on the relevant biology and discuss extensions of our model. With this abstract approach, we not only investigate equations with interesting dynamics but also develop biological predictions. In particular, our model illustrates that it is possible for cows to synchronize less when the coupling is increased.  相似文献   

3.
A phenomenological model for thermal relaxation and wave propagation in ideal polyatomic gases is developed by introducing a dynamical non‐equilibrium temperature. The system of equations governing the evolution of the gas is derived and the speeds of propagation of thermo‐mechanical disturbances together with the Rankine‐Hugoniot jump conditions for shock waves are calculated. The hyperbolic theories of heat propagation in incompressible fluids and rigid solids are recovered as particular cases. For rigid solids, the well posedness of the Cauchy problem is proved by a classical method.  相似文献   

4.
The basic concepts of classical mechanics are given in operator form. Then ahybrid systems approach with the operator formulation of both quantum andclassical sectors is applied to the case of an ideal nonselective measurement. Itis found that the dynamical equation, consisting of the Schrödinger and Liouvilledynamics, produces noncausal evolution when the initial state of the measured(quantum mechanical) system and measuring apparatus=nclassical mechanicalsystem is chosen to be as demanded in discussions regarding the problem ofmeasurement. Nonuniqueness of possible realizations of the transition from apure noncorrelated to a mixed correlated state is analyzed in detail. It is concludedthat the state of the quantum mechanical system instantaneously collapses becauseof the nonnegativity of probabilities, and a dynamical model of this reductionis proposed.  相似文献   

5.
Schroedinger equation on a Hilbert space H, represents a linear Hamiltonian dynamical system on the space of quantum pure states, the projective Hilbert space PH. Separable states of a bipartite quantum system form a special submanifold of PH. We analyze the Hamiltonian dynamics that corresponds to the quantum system constrained on the manifold of separable states, using as an important example the system of two interacting qubits. The constraints introduce nonlinearities which render the dynamics nontrivial. We show that the qualitative properties of the constrained dynamics clearly manifest the symmetry of the qubits system. In particular, if the quantum Hamilton’s operator has not enough symmetry, the constrained dynamics is nonintegrable, and displays the typical features of a Hamiltonian dynamical system with mixed phase space. Possible physical realizations of the separability constraints are discussed.  相似文献   

6.
The Kelvin-Helmholtz theorem on conservation of circulation is supposed to hold for ideal inviscid fluids and is believed to be play a crucial role in turbulent phenomena. However, this expectation does not take into account singularities in turbulent velocity fields at infinite Reynolds number. We present evidence from numerical simulations for the breakdown of the classical Kelvin theorem in the three-dimensional turbulent energy cascade. Although violated in individual realizations, we find that circulation is still conserved in some average sense. For comparison, we show that Kelvin's theorem holds for individual realizations in the two-dimensional enstrophy cascade, in agreement with theory. The turbulent "cascade of circulations" is shown to be a classical analogue of phase slip due to quantized vortices in superfluids, and various applications in geophysics and astrophysics are outlined.  相似文献   

7.
In this paper a three-dimensional system with five parameters is considered. For some particular values of these parameters, one finds known dynamical systems. The purpose of this work is to study some symmetries of the considered system, such as Lie-point symmetries, conformal symmetries, master symmetries and variational symmetries. In order to present these symmetries we give constants of motion. Using Lie group theory, Hamiltonian and bi-Hamiltonian structures are given. Also, symplectic realizations of Hamiltonian structures are presented. We have generalized some known results and we have established other new results. Our unitary presentation allows the study of these classes of dynamical systems from other points of view, e.g. stability problems, existence of periodic orbits, homoclinic and heteroclinic orbits.  相似文献   

8.
《Physics Reports》2004,400(2):67-148
We present an analysis of the properties as well as the diverse applications and extensions of the method of stabilisation transformation. This method was originally invented to detect unstable periodic orbits in chaotic dynamical systems. Its working principle is to change the stability characteristics of the periodic orbits by applying an appropriate global transformation of the dynamical system. The theoretical foundations and the associated algorithms for the numerical implementation of the method are discussed. This includes a geometrical classification of the periodic orbits according to their behaviour when the stabilisation transformations are applied. Several refinements concerning the implementation of the method in order to increase the numerical efficiency allow the detection of complete sets of unstable periodic orbits in a large class of dynamical systems. The selective detection of unstable periodic orbits according to certain stability properties and the extension of the method to time series are discussed. Unstable periodic orbits in continuous-time dynamical systems are detected via introduction of appropriate Poincaré surfaces of section. Applications are given for a number of examples including the classical Hamiltonian systems of the hydrogen and helium atom, respectively, in electromagnetic fields. The universal potential of the method is demonstrated by extensions to several other nonlinear problems that can be traced back to the detection of fixed points. Examples include the integration of nonlinear partial differential equations and the numerical determination of Markov-partitions of one-parametric maps.  相似文献   

9.
The rudiments of dynamical systems theory are employed to analyze the transmission of light through a two-element medium in which the elements are arranged in a Fibonacci sequence. A dynamical map, introduced by previous authors, is extended so that the enlarged map generates direct predictions about the behavior of the transmission coefficient for phases in the neighborhood of certain critical values. These values correspond to unique periodic orbits of the map. Lowest-order calculations are performed analytically to study the properties of scaling near the critical phases. A scale factor is defined to describe this behavior. The study examines three cases in which the map has a fixed point, a 3-cycle, and a 6-cycle. The first two cases have the property that their scale factors are given by exactly the same Fibonacci number. In contrast, the third case has the property that its scale factor depends explicitly on a parameter of the physical system. Speculative remarks are added in conclusion to argue for the occurrence of a type of scaling whose features originate in the abstract structure of the Fibonacci sequence and are independent of the particular choice of physical system.  相似文献   

10.
We study two types of dynamical extensions of Lucas sequences and give elliptic solutions for them. The first type concerns a level-dependent (or discrete time-dependent) version involving commuting variables. We show that a nice solution for this system is given by elliptic numbers. The second type involves a non-commutative version of Lucas sequences which defines the non-commutative (or abstract) Fibonacci polynomials introduced by Johann Cigler. If the non-commuting variables are specialized to be elliptic-commuting variables the abstract Fibonacci polynomials become non-commutative elliptic Fibonacci polynomials. Some properties we derive for these include their explicit expansion in terms of normalized monomials and a non-commutative elliptic Euler–Cassini identity.  相似文献   

11.
Interfaces between two fluids are ubiquitous and of special importance for industrial applications, e.g., stabilisation of emulsions. The dynamics of fluid-fluid interfaces is difficult to study because these interfaces are usually deformable and their shapes are not known a priori. Since experiments do not provide access to all observables of interest, computer simulations pose attractive alternatives to gain insight into the physics of interfaces. In the present article, we restrict ourselves to systems with dimensions comparable to the lateral interface extensions. We provide a critical discussion of three numerical schemes coupled to the lattice Boltzmann method as a solver for the hydrodynamics of the problem: (a) the immersed boundary method for the simulation of vesicles and capsules, the Shan-Chen pseudopotential approach for multi-component fluids in combination with (b) an additional advection-diffusion component for surfactant modelling and (c) a molecular dynamics algorithm for the simulation of nanoparticles acting as emulsifiers.  相似文献   

12.
The AdS/hydrodynamics correspondence provides a 1–1 map between large wavelength features of AdS black branes and conformal fluid flows. In this note we consider boundaries between nonrelativistic flows, applying the usual boundary conditions for viscous fluids. We find that a naive application of the correspondence to these boundaries yields a surface layer in the gravity theory whose stress tensor is not equal to that given by the Israel matching conditions. In particular, while neither stress tensor satisfies the null energy condition and both have nonvanishing momentum, only Israel's tensor has stress. The disagreement arises entirely from corrections to the metric due to multiple derivatives of the flow velocity, which violate Israel's finiteness assumption in the thin wall limit.  相似文献   

13.
The behavior of any physical system is governed by its underlying dynamical equations. Much of physics is concerned with discovering these dynamical equations and understanding their consequences. In this Letter, we show that, remarkably, identifying the underlying dynamical equation from any amount of experimental data, however precise, is a provably computationally hard problem (it is NP hard), both for classical and quantum mechanical systems. As a by-product of this work, we give complexity-theoretic answers to both the quantum and classical embedding problems, two long-standing open problems in mathematics (the classical problem, in particular, dating back over 70?years).  相似文献   

14.
G.L. Aranovich  M.D. Donohue 《Physica A》2009,388(17):3355-3370
Diffusion in fluids is analyzed at non-classical conditions, intermediate between the Knudsen and Fickian limits. The fluid is considered in the framework of the Einstein’s diffusion evolution equation involving expansions of the density distribution in powers of displacement and time. The standard truncation of these expansions results in the classical model of diffusion; however, higher-order terms lead to a departure from classical behavior. This has not been studied or discussed adequately in the literature previously.Here, we present an exact solution of the Einstein’s diffusion evolution equation without truncation of the density expansions. This solution illustrates limitations in the classical truncations and demonstrates non-classical effects due to large mean free paths, λ. In particular, this new solution shows that, at large λ, there are significant quantitative deviations from classical diffusion profiles. In addition, this solution demonstrates a dramatic change in the diffusion mechanism from the state where the molecular motions are predominantly ballistic to one of molecular chaos. This has implications for fundamentals of fluids between the Knudsen and Fickian limits, and for a variety of fields where evolution of a system includes random, multi-scale displacement of particles, such as nanotechnology, vacuum techniques, turbulence, and astrophysics.  相似文献   

15.
?. Kuru 《Annals of Physics》2009,324(12):2548-264
The dynamical algebras of the trigonometric and hyperbolic symmetric Pöschl-Teller Hamiltonian hierarchies are obtained. A kind of discrete-differential realizations of these algebras are found which are isomorphic to so(3, 2) Lie algebras. In order to get them, first the relation between ladder and factor operators is investigated. In particular, the action of the ladder operators on normalized eigenfunctions is found explicitly. Then, the whole dynamical algebras are generated in a straightforward way.  相似文献   

16.
Multimoment hydrodynamics equations are used to solve the problem of flow around a quiescent solid sphere. The solutions to the multimoment hydrodynamics equations are found, which enable to interpret of the phenomenon of vortex shedding. The solutions give a pattern of instability development that qualitatively reproduces experimental data over a wide range of Reynolds numbers. The replacement of one unstable flow mode by another unstable mode is governed the tendency of the system to find the fastest way to depart from the state of statistical equilibrium. After stability loss, the system does not reach a new stable state. Such a scenario is at odds with the ideas of classical hydrodynamics, which interprets the development of instability in terms of a bifurcation transition from one stable state to another. This picture presented shows the direction of solving the problems faced by classical hydrodynamics in the interpretation of the phenomenon of vortex shedding.  相似文献   

17.
18.
G. Costanza 《Physica A》2009,388(13):2600-2622
The continuum evolution equations are derived from updating rules for three classes of stochastic models. The first class corresponds to models whose stochastic continuum equations are of the Langevin type obtained after carrying out a “local average” known as coarse-graining. The second class consists of a hierarchy of continuum equations for the correlations of the dynamical variables obtained after making an average over realizations. This average generates a hierarchy of deterministic partial differential equations except when the dynamical variables do not depend on the values of the neighboring dynamical variables, in which case a hierarchy of ordinary differential equations is obtained. The third class of evolution equations for the correlations of the dynamical variable constitutes another hierarchy after calculating an average over both realizations and all the sites of the lattice. This double average generates a hierarchy of deterministic ordinary differential equations. The second and third classes of equations are truncated using a mean field (m,n)-closure approximation in order to obtain a finite set of equations. Illustrative examples of every class are given.  相似文献   

19.
20.
The theorem on symmetries is proved that states that a Liouville-integrable Hamiltonian system is non-degene\-rate in Kolmogorov's sense and has compact invariant submanifolds if and only if the corresponding Lie algebra of symmetries is abelian. The theorem on symmetries has applications to the characterization problem, to the integrable hierarchies problem, to the necessary conditions for the strong dynamical compatibility problem, and to the problem on master symmetries. The invariant necessary conditions for the non-degenerate C-integrability in Kolmogorov's sense of a given dynamical system V are derived. It is proved that the C-integrable Hamiltonian system is non-degenerate in the iso-energetic sense if and only if the corresponding Lie algebra of the iso-energetic conformal symmetries is abelian. An extended concept of integrability of Hamiltonian systems on the symplectic manifolds M n , n= 2k, is introduced. The concept of integrability describes the Hamiltonian systems that have quasi-periodic dynamics on tori or on toroidal cylinders of an arbitrary dimension . This concept includes, as a particular case, all Hamiltonian systems that are integrable in Liouville's classical sense, for which . The A-B-C-cohomologies are introduced for dynamical systems on smooth manifolds. Received: 16 January 1996 / Accepted: 3 July 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号