首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Magnetic field (0–4 T) and temperature dependencies (4.2–320 K) of the electrical resistance of Gd5(Si1.5Ge2.5), which undergoes a reversible first-order ferromagnetic↔paramagnetic phase transition, have been measured. The electrical resistance of Gd5(Si1.5Ge2.5) indicates that the magnetic phase transition can be induced by both temperature and magnetic field. The temperature dependence of the electrical resistance, R(T), for heating at low temperatures in the zero magnetic field has the usual metallic character, but at a critical temperature of Tcr=216 K the resistance shows a 20% negative discontinuity due to the transition from the low-temperature high-resistance state to the high-temperature low-resistance state. The R(T) dependence for cooling shows a similar but positive 25% discontinuity at 198 K. The isothermal magnetic field dependence of the electrical resistance from 212T224 K indicates the presence of temperature-dependent critical magnetic fields which can reversibly transform the paramagnetic phase into the ferromagnetic phase and vice versa. The critical magnetic fields diagram determined from the isothermal magnetic field dependencies of the electrical resistance of Gd5(Si1.5Ge2.5) shows that the FM↔PM transition in zero magnetic field on cooling and heating occurs at 206 and 213 K, respectively. The full isothermal magnetic filed hysteresis for the FM↔PM transition is 2 T, and the isofield temperature gap between critical magnetic fields is 7 K.  相似文献   

2.
The temperature dependence of the ac susceptibility (χ) at constant applied magnetic field was investigated in the paramagnetic region of the quasi-2D ferromagnet (CH3NH3)2CuCl4. Above the Curie temperature (TC=8.85 K) a maximum in the χ(T,H) curves was observed at Tm(H). The temperature at the maximum increases with increasing applied field. This anomaly is related to short range fluctuations close the order transition. The behavior of Tm(H) is governed by the gap exponent of the scaling function (Δ=γ+β). We found Δ=2.2±0.1 in very good agreement with the previously known values of γ and β.  相似文献   

3.
The magnetic behavior of amorphous Nd4(Fe0.75Cr0.25)77.5B18.5 alloys was investigated in the critical region. The Curie temperature TC and critical exponents β, γ and δ are found to be 141 K, 0.45±0.02, 1.64±0.08 and 4.66±0.10, respectively. The data are fitted to a magnetic equation of state characteristic of a second-order phase transition over a rather wide range of temperatures both above and below TC. It is noted that the values of the exponents are in disagreement with those derived for a three-dimensional Heisenberg ferromagnet and show an enhancement. This anomalous critical behavior may originate from magnetic inhomogeneity.  相似文献   

4.
Temperature dependences of heat capacity CP(T) and magnetization M(T) of an icosahedral dysprosium boride (DyB62) single crystal have been experimentally investigated in the temperature range of 2-300 K. The magnetic susceptibility χ(T) of DyB62 follows Curie-Weiss law with a paramagnetic Curie temperature of −3.7 K, which implies that the antiferromagnetic interactions are dominant in this material and suggests the possibility of magnetic ordering at low temperatures. This conjecture is supported by the temperature dependence of heat capacity CP(T), which decreases upon heating from 2 to 7 K. The heat capacity of DyB62 at 2 K is analyzed as a sum of magnetic, Debye, two-level system and soft atomic potential components.  相似文献   

5.
We make a new proposal to describe the very low temperature susceptibility of the doped Haldane gap compound Y2BaNi1-xZnxO5. We propose a new mean field model relevant for this compound. The ground state of this mean field model is unconventional because antiferromagnetism coexists with random dimers. We present new susceptibility experiments at very low temperature. We obtain a Curie-Weiss susceptibility χ( T ) ∼ C /(Θ + T ) as expected for antiferromagnetic correlations but we do not obtain a direct signature of antiferromagnetic long range order. We explain how to obtain the “impurity” susceptibility ( T ) by subtracting the Haldane gap contribution to the total susceptibility. In the temperature range [1 K, 300 K] the experimental data are well fitted by T ( T ) = C imp 1 + T imp / T . In the temperature range [100 mK, 1 K] the experimental data are well fitted by T ( T ) = A ln( T / T c ), where T c increases with x. This fit suggests the existence of a finite Néel temperature which is however too small to be probed directly in our experiments. We also obtain a maximum in the temperature dependence of the ac-susceptibility ( T ) which suggests the existence of antiferromagnetic correlations at very low temperature. Received 17 July 2001  相似文献   

6.
We present aborption spectra of an oriented single crystal of MnK4H2(SO4)4, 2H2O at temperatures between 20 and 1.6 K. This salt has orthorhombic symmetry and gives, both in the visible and ultraviolet regions, an absorption spectrum which changes considerably when the temperature decreases from 20 to 4.2 K. The spectrum has sharp lines at 1.6 K in the two absorption regions corresponding to teh excited levels 4A14E(4G) and 4T2(4D). A study has been made of the Zeeman splitting of these sharp lines; a discontinuity has been observed in the Zeeman splitting as a function of magnetic field at 1.6 K. This discontinuity is a consequence of a magnetically-ordered phase.  相似文献   

7.
The magnetocaloric effect ΔT has been studied by a direct method in two samples of the manganite Sm0.55Sr0.45MnO3, namely, a single crystal (sample A) and a ceramic sample (sample C). The temperature dependences of the ΔT effect of both samples exhibit a maximum at T max = 143.3 K for the sample A and T max = 143 K for the sample C. In these maxima, the values of the ΔT effect are 0.8 and 0.4 K in the magnetic field H = 14.2 kOe for the samples A and C, respectively. In addition, the ΔT(T) curve of the sample A has a minimum at T min = 120 K, in which ΔT = −0.1 K. The maximum value of the ΔT effect increases with an increase in the magnetic field H in the range of magnetic fields up to 14.2 kOe, and the rate of this increase at H > 8 kOe is higher than that at H < 8 kOe. These features of the ΔT effect are explained by the presence of ferromagnetic and antiferromagnetic A- and CE-type clusters in the samples.  相似文献   

8.
We report on large negative magnetoresistance observed in ferromagnetic thiospinel compound CuCrZrS4. The electrical resistivity increased with decreasing temperature according to the exp(T0/T)1/2, an expression derived from variable range hopping with strong electron-electron interaction. The resistivity under a magnetic field was expressed by the same form with the characteristic temperature T0 decreasing with increasing magnetic field. Magnetoresistance ratio ρ(T,0)/ρ(T,H) is 1.5 for H=90 kOe at 100 K and increases divergently with decreasing temperature reaching 80 at 16 K. Results of magnetization measurements are also presented. A possible mechanism of the large magnetoresistance is discussed.  相似文献   

9.
The influence of interstitial hydrogen on the electronic structure and the itinerant-electron metamagnetic (IEM) transition in strong magnetocaloric compound La(Fe0.88Si0.12)13H1.6 has been investigated by Mössbauer spectroscopy. A slight change in the average hyperfine field at 4.2 K was observed after hydrogen absorption. In contrast, the thermally induced first-order transition related to the IEM transition for y=1.6 appears at the Curie temperature TC=330 K, much higher than TC=195 K for y=0.0. The increase of isomer shift δIS at 4.2 K indicates that the valence electron transfer from hydrogen to Fe is negligibly small, hence the change in the magnetic state is closely associated with a volume expansion after hydrogen absorption. No change in shape by hydrogenation for the Mössbauer spectra in the paramagnetic state has been observed except for a difference in only δIS, indicating the volume expansion by hydrogenation is isotropic. Accordingly, the significant increase of TC by hydrogen absorption is attributed to the magnetovolume effect associated with characteristic feature in IEM compounds. A discontinuous change of ferromagnetic moment, ΔM, around TC has been observed by Mössbauer spectra, as expected from the magnetization measurement. The value of ΔM is slightly decreased by increase of TC after hydrogenation but its magnitude is almost the same due to the stabilization of ferromagnetic moment. As a result, strong magnetocaloric effect is maintained up to room temperature after hydrogenation.  相似文献   

10.
Charge fluctuations in quasi-one-dimensional hole-doped Sr14Cu24O41 (Ca-0) and Sr2Ca12Cu24O41 (Ca-12) spin-ladder cuprates have been studied with the use of 63Cu-17O NMR. Spin-echo decay rates 17(1/T 2) and 63(1/T 2) have been measured in the temperature range of T = 10–300 K. The variation of 17(1/T 2) and 63(1/T 2) in the Ca-0 compound is monotonic in the entire temperature range of the NMR study. In the Ca-rich compound, pronounced peaks have been observed in the decay rates 17(1/T 2) and 63(1/T 2) at temperatures of 25 and 50 K, respectively. This result indicates the presence of collective low-frequency (τcT 2) charge density fluctuations in superconducting Ca-12 with an activation energy of E A = 100(10) K. The fluctuations gradually slow down as the temperature decreases. The amplitude of the charge density fluctuations is only 0.01–0.02 hole per site. 17O-63Cu spin-echo double-resonance (SEDOR) experiments in Sr14 − x Ca x Cu24O41 oxides with x = 0 and 12 have been performed depending on the temperature and orientation of single crystals in a magnetic field. The constants of an indirect heteronuclear 17O-63Cu interaction of nuclear spins mediated by conduction electrons have been measured. The estimates of the indirect interaction constants for nearest neighbors O1-Cu and O2-Cu, as well as SEDOR experiments with selective excitation of separate sections of 17O and 63Cu NMR spectra, provide convincing evidence of the microscopically inhomogeneous spatial distribution of spin density developing in a crystal. Original Russian Text ? Yu.V. Piskunov, V.V. Ogloblichev, S.V. Verkhovsky, 2007, published in Pis’ma v Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 86, No. 11, pp. 850–855.  相似文献   

11.
The behavior of the low-temperature specific heat C(T) for YBa2Cu3O6 + x single crystals with the doping level corresponding to the normal phase has been studied by the relaxation technique at different values of the applied magnetic field. It has been found that the C(T)/T plot exhibits such an anomaly as a steep increase with decreasing temperature from T about 4 K down to T ≤ 2 K (the minimum temperature value accessible in the experiment). The applied magnetic field as high as 9 T inverts this anomaly and leads to a sharp drop in C(T)/T during cooling within the same temperature range. A model involving the Schottky-type centers formulated in this work and the data on spin correlation functions has allowed us to calculate the temperature dependence of the specific heat, which fits the experimental curves quite well.  相似文献   

12.
The transport properties (R(T) and R(H) dependences at various values of the transport current in magnetic fields up to 65 kOe) and low-temperature heat capacity in magnetic fields up to 90 kOe of the BaPb0.75Bi0.25O3 superconductor (T C ≈ 11.3 K) are investigated with the goal of clarifying the mechanisms determining the nonmonotonic behavior and hysteresis of its magnetoresistance R(H). The type of R(H) hysteretic dependences for BaPb0.75Bi0.25O3 is analogous to that observed in granular high-T c superconductors (HTSCs); however, unlike classical HTSC systems, the field width of the magnetoresistance hysteresis loop for polycrystalline BaPb0.75Bi0.25O3 depends on the transport current. This means that although the mechanisms responsible for the magnetoresistance hysteresis (the influence of the magnetic flux trapped in superconducting regions on the effective field in Josephson interlayers) are identical in these objects, the transport current in BaPb0.75Bi0.25O3 may considerably affect the diamagnetic response of the superconductor. A considerable effect of transport current on the field in which the R(H) dependences have a peak and exhibit hysterestic properties is observed. Such a behavior can be adequately interpreted using the model of the spatially inhomogeneous superconductor-insulator state proposed by Gorbatsevich et al. [JETP Lett. 52, 95 (1990)]. The nonmonotonic dependence of quantity C/T (C is the heat capacity) on the magnetic field discovered in the present study also agrees with the conclusions based on this model.  相似文献   

13.
Magnetosensitive microwave absorption measurements of polycrystalline ferrite Ni0.35Zn0.65Fe2O4 was carried out at 9.4 GHz (X-band) as a function of temperature. Temperature dependence of the total linewidth (ΔHpp) deduced from the resonance spectra showed the passage through the Curie point (Tc~430 K). Additionally, the plot ΔHpp vs. T also indicated the existence of another magnetic phase transition at ~240 K, which can be associated with a Yafet-Kittel-type canting of the magnetic moments. Low-field microwave absorption (LFMA) and the magnetically modulated microwave absorption spectroscopy (MAMMAS) were used to give a further knowledge on this material. For low temperature, these techniques give evidence of a Yafet-Kittel-type canting of the magnetic moments.  相似文献   

14.
王志翠  何伦华  王海  刘荣灯  王芳卫 《中国物理 B》2012,21(4):46101-046101
The crystallographic structure and magnetic properties of La(Fell.4Alz.6)C0.02 are studied by magnetic measurernent and powder neutron diffraction with temperature and applied magnetic field. Rietveld refinement shows that La(Fe11.4Al1.6)C0.02 crystallizes into the cubic NaZn13-type with two different Fe sites: FeI (8b) and FeII (96i), and that A1 atoms preferentially occupy the FeII site. A ferromagnetic state can he induced at a medial temperature of 39 K-139 K by an external magnetic field of 0.7 T, and a large lattice is correspondingly found at 100 K and 0.7 T. In all other conditions, La(Fe11.4Al1.6)C0.02 has no net magnetization in the paramagnetic (T 〉 TN = 182 K) or antifer- romagnetic states, and thus keeps its small lattice. Analysis of the Fe Fe bond length indicates that the ferromagnetic state prefers longer Fe-Fe distances.  相似文献   

15.
Magnetic and superconducting properties of polycrystalline samples of RuSr2Gd1.5Ce0.5Cu2O(10 − δ), asprepared (by solid-state reaction) and annealed in pure oxygen at different pressure are presented. Specific heat and magnetization were investigated in the temperature range 1.8–300 K with a magnetic field up to 8 T. Specific heat, C (T), shows a jump at the superconducting transition (with onset at T ≈ 37.5 K) and a Schottky-type anomaly below 20 K. It is found that curves C(T) taken for different values of magnetic field have the same crossing point (at T * ≈ 2.7 K) for all samples studied. At the same time, C(H) curves taken for different temperatures have a crossing point at a characteristic field H * ≈ 3.7 T. These effects are manifestations of the crossing-point phenomenon, which is supposed to be inherent for strongly correlated electron systems.  相似文献   

16.
Hydrogenation, crystal structure and magnetic properties of La(Fe0.91Si0.09)13H(D)y have been studied by pressure-composition isotherms (PCI), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and magnetization measurements. The maximum absorption capacity is found to be 1.9 H(D) atoms per formula unit as a solid solution. All hydrides and deuterides crystallize in the NaZn13-type cubic structure with the lattice parameter increasing linearly with H(D) concentration. The H(D) absorption enhances the Curie temperature significantly. The magnetic entropy change of the highly H-absorbed compound La(Fe0.91Si0.09)13H1.81 reaches ~26 J/kg·K under a magnetic field change of 5 T near the Curie temperature TC = 350 K. No observable isotope effect seems to imply that only the magnetovolume effect is responsible for the strong interplay between magnetism and lattice.  相似文献   

17.
钙钛矿(La1-yTby)0.67Sr0.33MnO3的超巨磁电阻效应   总被引:8,自引:4,他引:4       下载免费PDF全文
采用固相反应烧结法制成了钙钛矿(La1-yTby)0.67Sr0.33MnO3(y=0—1)多晶样品.研究了样品的微观结构,常温、低温下的磁性,样品的磁电阻随温度、成分的变化关系,电阻随温度变化特性等.并在y=0.40样品中,170K附近、最大磁化场为7T时,观察到了900%的巨磁电阻. 关键词:  相似文献   

18.

The heat capacity (C P), the thermal diffusion (η), the thermal conductivity (κ), and the electrical resistance of the La0.825Sr0.175MnO3 single crystal have been measured in the temperature range 80–350 K in magnetic fields to 40 kOe. Dependences C P(T), κ(T), and η(T) have anomalies near T C, which are suppressed in magnetic field. The minima in dependences κ(T) and η(T) near T C are explained by the phonon scattering on fluctuations of the magnetic order parameter. Dependences κ(T) and η(T) have anomalies near T S = 200 K related to the structural transition from the rhombohedral (R) to the orthorhombic (O*) phase.

  相似文献   

19.
20.
霍德璇  廖罗兵  李领伟  李妙  钱正洪 《中国物理 B》2013,22(2):27502-027502
The magnetocaloric effect(MCE) in EuCu1.75P2 compound is studied by the magnetization and heat capacity measurements.Magnetization and modified Arrott plots indicate that the compound undergoes a second-order phase transition at TC ~ 51 K.A large reversible MCE is observed around TC.The values of maximum magnetic entropy change(-△SxMma) reach 5.6 J·kg-1·K-1 and 13.3 J·kg-1·K-1 for the field change of 2 T and 7 T,respectively,with no obvious hysteresis loss in the vicinity of Curie temperature.The corresponding maximum adiabatic temperature changes(△Tadmax) are evaluated to be 2.1 K and 5.0 K.The magnetic transition and the origin of large MCE in EuCu1.75P2 are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号