首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction kinetics between dense, polycrystalline pellets of La2O3 and CoO were investigated at temperatures of 1370-1673 K and oxygen partial pressures of 40 Pa - 50 kPa. At high oxygen partial pressures, single phase LaCoO3 was formed. The growth of the LaCoO3 phase followed the parabolic rate law. The location of Pt markers demonstrated that diffusion of Co3+ cations in LaCoO3 dominated over diffusion of La3+. The diffusion coefficient of Co3+ was determined from the parabolic rate constant, and an activation energy of (250 +/- 10) kJ mol-1 was found. The diffusion coefficient of Co3+ in LaCoO3 decreased with decreasing oxygen partial pressure. At the lowest oxygen partial pressure investigated, two product phases, LaCoO3 and La2CoO4, were observed. The diffusion coefficient of Co cations in La2CoO4 was estimated. Results were discussed in relation to cation diffusion in other LnBO3 oxides (B = Cr3+, Mn3+, Fe3+). A correlation between diffusion of the B cation and the melting point was found for LnBO3 materials.  相似文献   

2.
Fourier transform ion cyclotron resonance mass spectrometry was employed to study the products and kinetics of gas-phase reactions of Cm (+) and Cm (2+); parallel studies were carried out with La (+/2+), Gd (+/2+) and Lu (+/2+). Reactions with oxygen-donor molecules provided estimates for the bond dissociation energies, D[M (+)-O] (M = Cm, Gd, Lu). The first ionization energy, IE[CmO], was obtained from the reactivity of CmO (+) with dienes, and the second ionization energies, IE[MO (+)] (M = Cm, La, Gd, Lu), from the rates of electron-transfer reactions from neutrals to the MO (2+) ions. The following thermodynamic quantities for curium oxide molecules were obtained: IE[CmO] = 6.4 +/- 0.2 eV; IE[CmO (+)] = 15.8 +/- 0.4 eV; D[Cm-O] = 710 +/- 45 kJ mol (-1); D[Cm (+)-O] = 670 +/- 40 kJ mol (-1); and D[Cm (2+)-O] = 342 +/- 55 kJ mol (-1). Estimates for the M (2+)-O bond energies for M = Cm, La, Gd, and Lu are all intermediate between D[N 2-O] and D[OC-O] - that is, 167 kJ mol (-1) < D[M (2+)-O] < 532 kJ mol (-1) - such that the four MO (2+) ions fulfill the thermodynamic requirement for catalytic oxygen-atom transport from N2O to CO. It was demonstrated that the kinetics are also favorable and that the CmO (2+), LaO (2+), GdO (2+), and LuO (2+) dipositive ions each catalyze the gas-phase oxidation of CO to CO2 by N2O. The CmO 2 (+) ion appeared during the reaction of Cm (+) with O 2 when the intermediate, CmO (+), was not collisionally cooled - although its formation is kinetically and/or thermodynamically unfavorable, CmO 2 (+) is a stable species.  相似文献   

3.
采用热重和微商热重(TG/DTA)综合热分析技术在不同升温速率下研究了掺入La(NO3)3和Pr(NO3)3的高岭石的热分解过程, 利用Coats-Redfern积分法和Achar微分法对热分析实验数据进行动力学计算, 得到了高岭石脱羟基反应过程中的控制机理函数、 活化能和指前因子等动力学参数; 分析了2种稀土掺入对高岭石脱羟基过程动力学参数的影响, 并用Ozawa法对活化能进行了验证. 结果表明, 未掺稀土和掺入Pr(NO3)3的高岭石的脱羟基反应过程均受化学反应模型F3控制, 反应的活化能分别为307.94和282.86 kJ/mol, 指前因子lnA的值分别为47.8980和44.1718; 掺入La(NO3)3的高岭石脱羟基反应过程控制机理函数发生改变, 受化学反应模型F2控制, 反应活化能为196.02 kJ/mol, 指前因子lnA的值为29.5551. 与未掺稀土的高岭石对比, 掺入Pr(NO3)3后活化能和指前因子略有降低; 而掺入La(NO3)3后则显著降低, 分别降低了36.34%和38.30%. 采用Ozawa法验证得到的活化能与Coats-Redfern积分法和Achar微分法结果一致.  相似文献   

4.
Quantum state-resolved sticking coefficients on Pt(111) and Ni(111) surfaces have been measured for CH4 excited to the first overtone of the antisymmetric C-H stretch (2nu3) at well-defined kinetic energies in the range of 10-90 kJ/mol. The ground-state reactivity of CH4 is approximately 3 orders of magnitude lower on Ni(111) than on Pt(111) for kinetic energies in the range of 10-64 kJ/mol, reflecting a difference in barrier height of 28+/-6 kJ/mol. 2nu3 excitation of CH4 increases its reactivity by more than 4 orders of magnitude on Ni(111), whereas on Pt(111) the reactivity increase is lower by 2 orders of magnitude. We discuss the observed differences in the state-resolved reactivity for the ground state and 2nu3 excited state of methane in terms of a difference in barrier height and transition state location for the dissociation reaction on the two metal surfaces.  相似文献   

5.
超细钙钛矿复合氧化物的制备和性能研究   总被引:13,自引:0,他引:13  
陈敏  王幼文  郑小明 《无机化学学报》2003,19(10):1145-1149
钙钛矿型复合氧化物(ABO_3)具有稳定的结构和较好的热稳定性,是一类被视为能够替代传统贵金属控制汽车尾气净化催化剂的新型三效催化剂。但其主要问题是比表面大小,一般小于10m~2·g~(-1),因此其催化活性的提高受到一定的限制。近几十年  相似文献   

6.
The ion conductivity of zirconium hydrogen monothiophosphate (Zr(HPO(3)S)(2)x1.5H(2)O) has been measured by impedance spectroscopy. The measured value of proton conductivity is 3 x 10(-5) S/cm at 298 K. Conductivity was shown to decrease with increasing temperature due to a dehydration process. Above 450 K, the conductivity is likely governed by proton transport in the anhydrous phase Zr(HPO(3)S)(2). The activation energies of proton conductivity were measured to be 18 +/- 2 kJ/mol for Zr(HPO(3)S)(2)x1.5H(2)O and 60 +/- 3 kJ/mol for the anhydrous compound. The kinetics of ion exchange was studied with the use of potentiometric titration for several ion pairs, H(+)/Na(+), H(+)/Zn(2+), and Na(+)/Zn(2+) in Zr(HPO(3)S)(2)x1.5H(2)O. The diffusion coefficient values for H(+)/Na(+) ion exchange in Zr(HPO(3)S)(2)x1.5H(2)O are lower than those reported in alpha-zirconium phosphate. At the same time, the mobility of zinc ions in Zr(HPO(3)S)(2)x1.5H(2)O is higher than sodium ion mobility. The ion exchange H(+)/Zn(2+) is accompanied by the slow hydrolysis of the initial compound. In all cases, the powdered solids were evaluated by powder X-ray diffraction, and particle sizes were controlled by grinding and sieving the powders.  相似文献   

7.
用柠檬酸盐法合成出La_(1-_x)Sr_xFeO_3(x=0.1,0.2,0.3,0.4)原粉,再经固相反应得到纳米晶粉末,用TG、DTA、XRD、IR进行了表征,确证复合氧化物La_(1-_x)Sr_xFeO_3为钙钛矿型结构,粒径在10~25nm之间。实验结果表明,随着固相反应条件不同,产物粒径呈规律性变化.气敏特性研究表明,该纳米晶材料对乙醇有较高的选择性和灵敏度,其选择性顺序为La_(0.9)Sr_(0.1)FeO_3>LaFeO_3>LaFeO_3(大晶粒)。  相似文献   

8.
Experimentally based lattice energies are calculated for the apatite family of double salts M(5)(PO(4))(3)X, where M is a divalent metal cation (Ca, Sr, Ba) and X is hydroxide or a halide. These values are also shown to be estimable, generally to within 4%, using the recently derived Glasser-Jenkins equation, U(POT) = AI(2I/V(m))(1/3), where A = 121.39 kJ mol(-)(1). The apatites exhibiting greater covalent character (e.g., M = Pb, Cd, etc.) are less well reproduced but are within 8% of the experimentally based value. The lattice energy for ionic apatites (having identical lattice ionic strengths, I) takes the particularly simple form U(POT)/kJ mol(-)(1) = 26680/(V(m)/nm(3))(1/3), reproducing cycle values of U(POT) well when V(m) is estimated by ion volume summation and employing a volume for the PO(4)(3)(-) ion (not previously quantified with an associated error) of 0.063 +/- 0.003 nm(3). A value for the enthalpy of formation of the gaseous phosphate ion, DeltaH(f)( ) degrees (PO(4)(3)(-), g), is absent from current thermochemical tabulations. Examination of solution and solid state thermochemical cycles for apatites, however, leads us to a remarkably consistent value of 321.8 +/- 1.2 kJ mol(-)(1). Experimental and estimated lattice energies were used along with other thermodynamic data to determine enthalpies, entropies, and free energies of dissolution for apatites of uncertain stabilities. These dissolution values are compared with the corresponding values for stable apatites and are used to rationalize the relative instability of certain derivatives.  相似文献   

9.
We synthesized polycrystalline pristine and Pr(3+)-doped perovskites La(1/3)MO(3) (M = Nb, Ta):Pr(3+) and investigated their crystal structure, optical absorption, and luminescence properties. The optical band gap of La(1/3)NbO(3) (3.2 eV) is smaller than that of La(1/3)TaO(3) (3.9 eV), which is primarily due to the difference in electronegativity between Nb and Ta. In La(1/3)NbO(3):Pr(3+), the red emission assigned to the f-f transition of Pr(3+) from the excited (1)D(2) level to the ground (3)H(4) state upon band gap photoexcitation (near-UV) was observed, whereas the f-f transition of Pr(3+) with blue-green emission from the excited (3)P(0) level to the ground (3)H(4) state was quenched. On the other hand, in La(1/3)TaO(3):Pr(3+), the blue-green emission upon band gap photoexcitation was observed. Their differences in emission behavior are attributed to the energy level of the ground and excited states of 4f(2) for Pr(3+), relative to the energy levels of the conduction and valence bands, and the trapped electron state, which mediates the relaxation of electron from the conduction band to the excited state of Pr(3+). La(1/3)NbO(3):Pr(3+) is a candidate red phosphor utilizing near-UV LED chips (e.g., λ = 375 nm) as an excitation source.  相似文献   

10.
The m/z 44 appearance energies for five primary amines have been measured by threshold photoionization mass spectrometry. Following an analysis of the thermochemistry associated with these unimolecular fragmentations, a value of 665.1 +/- 1.4 kJ mol(-1) is obtained for the 298 K heat of formation for the ethylidenimmonium cation (CH(3)CH=NH(2)(+)). When combined with high-level ab initio calculations, this results in absolute proton affinities of 906.4 +/- 2.7 and 909.2 +/- 2.8 kJ mol(-1) for the ethylidenimines E-CH(3)CH=NH and Z-CH(3)CH=NH, respectively.  相似文献   

11.
Vanadyl bond dissociation energies are calculated by density functional theory (DFT). While the hybrid (B3LYP) functional results are close to the available reference data, gradient corrected functionals (BP86, PBE) yield large errors (about 50 to 100 kJ mol(-1)), but reproduce trends correctly. PBE calculations on a V(20)O(62)H(24) cluster model for the (001) surface of V(2)O(5) crystals virtually reproduce periodic slab calculations. The low bond dissociation energy (formation of oxygen surface defect) of 113 kJ mol(-1)(B3LYP) is due to substantial structure relaxations leading to formation of V-O-V bonds between the V(2)O(5) layers of the crystal. This relaxation cannot occur in polyhedral (V(2)O(5))(n) clusters and also not for V(2)O(5) species supported on silica or alumina (represented by cage-type models) for which bond dissociation energies of 250-300 kJ mol(-1) are calculated. The OV(OCH(3))(3) molecule and its dimer are also considered. Radical cations V(2)O(5)(+) and V(4)O(10)(+) have very low bond dissociation energies (22 and 14 kJ mol(-1), respectively), while the corresponding radical anions have higher dissociation energies (about 330 kJ mol(-1)) than the neutral clusters. The bond dissociation energies of the closed shell V(3)O(7)(+) cation (165 kJ mol(-1)) and the closed shell V(3)O(8)(-) anion (283 kJ mol(-1)) are closest to the values of the neutral clusters. This makes them suitable for gas phase studies which aim at comparisons with V(2)O(5) species on supporting oxides.  相似文献   

12.
Atomistic computational modelling of the surface structure of the catalytically-active perovskite LaCoO(3) has been undertaken in order to develop better models of the processes involved during catalytic oxidation processes. In particular, the energetics of creating oxygen ion vacancies at the surface have been investigated for the three low index faces (100), (110) and (111). Two mechanisms for vacancy creation have been considered involving dopant Sr(2+) cations at the La(3+) site and reduction of Co(3+) to Co(2+). For both mechanisms, there is a general tendency that the smaller the cation defect separation, the lower the energy of the cluster, as would be expected from simple electrostatic considerations. In addition, there are clear indications that oxygen vacancies are more easily created at the surface than in the bulk. The results also confirm that the presence of defects strongly influences crystal morphology and surface chemistry. The importance of individual crystal surfaces in catalysis is discussed in terms of the energetics for the creation of oxygen vacancies.  相似文献   

13.
Energy selected trimethyl phosphine ions were prepared by threshold photoelectron photoion coincidence (TPEPICO) spectroscopy. This ion dissociates via H, CH(3), and CH(4) loss, the latter two involving hydrogen transfer steps. The ion time-of-flight distribution and the breakdown diagram are analyzed in terms of the statistical RRKM theory, which includes tunneling. Ab initio and DFT calculations provide the vibrational frequencies required for the RRKM modeling. CH(3) loss could produce both the P(CH(3))(2)(+) by a simple bond dissociation step, and the more stable HP(CH(2))CH(3)(+) ion by a hydrogen transfer step. Quantum chemical calculations are extensively used to uncover the reaction scheme, and they strongly suggest that the latter product is exclusively formed via an isomerization step in the energy range of the experiment. The data analysis, which includes modeling with the trimethyl phosphine thermal energy distribution, provides accurate onset energies for both H (E(0K) = 1024.1 +/- 3.5 kJ/mol) and CH(3) (E(0K) = 1024.8 +/- 3.5 kJ/mol) loss reactions. From this analysis, we conclude that the Delta(f)H(298K) degrees [HP(CH(2))(CH(3))(+)] = 783 +/- 8 kJ/mol and Delta(f)H(298K) degrees [P(CH(2))(CH(3))(2)(+)] = 711 +/- 8 kJ/mol.  相似文献   

14.
Photoionization mass spectrometry has been used to measure appearance energies for immonium cation formation from 25 alkyl amine precursors. A number of the unimolecular fragmentation processes are shown to involve excess energy at threshold so that, of the 11 different cations investigated, it is only possible to derive reliable 298 K heats of formation for CH2=NH2+ (749.0 +/- 0.9 kJ mol(-1)), CH(3)CH=NH2+ (666.1 +/- 1.1 kJ mol(-1)), C(2)H(5)CH=NH2+ (636.8 +/- 2.5 kJ mol(-1)), CH2=NH(CH3)+ (706.1 +/- 1.0 kJ mol(-1)), CH2=NH(C(2)H(5))+ (668.4 +/- 1.3 kJ mol(-1)), and CH2=N(CH3)2+ (668.0 +/- 2.5 kJ mol(-1)). When these are compared to those calculated by the G3, G3B3, G2, G2(MP2), CBS-APNO, and W1U composite ab initio methods, it is found that the smallest mean absolute deviation of 1.2 +/- 0.8 kJ mol(-1) is obtained from the G2 calculations.  相似文献   

15.
LaMO3纳米复合钙钛矿氧载体化学循环重整甲烷制合成气   总被引:1,自引:0,他引:1  
代小平  余长春 《催化学报》2011,(8):1411-1417
采用溶胶-凝胶法制备了不同B位可变价离子的LaMO3 (M= Cr,Mn,Fe,Co)复合氧化物氧载体,采用X射线衍射、N2吸附-脱附、扫描电镜及CH4程序升温表面反应等手段对氧载体进行了表征,并用于直接选择氧化CH4的反应中.结果表明,Cr,Mn,Fe 和Co均能形成LaMO3纳米复合钙钛矿结构,其氧物种氧化能力大小...  相似文献   

16.
La1—xMxCoO3(M=Ca,Sr)还原性的研究   总被引:1,自引:0,他引:1  
以XPS和XRD手段研究了La_(1-x)M_xCoO_3复合氧化物的还原性质,得到还原程度次序为La_(1-x)Sr_xCoO_3>La_(1-x)Ca_xCoO_3>LaCoO_3;相同离子取代系列随x增大,还原容易进行,探讨了取代钴酸镧的氢还原机理。  相似文献   

17.
A combinatorial approach was used to systematically investigate the effect of trace Pr(3+), Tb(3+), or Sm(3+) on the VUV photoluminescence of Eu(3+) in the Pr(3+), Tb(3+), or Sm(3+) co-doped (Y(0.65)Gd(0.35))BO(3):E(3+)(0.05). We found that Pr(3+) and Tb(3+)increases the VUV photoluminescent efficiency, while Sm(3+) decreases the efficiency. The optimized composition was identified to be between 7 x 10(-6) and 3 x 10(-4), and the corresponding efficiency improvement is about 15%. Scale-up experiments confirmed the results in the combinatorial materials libraries.  相似文献   

18.
Threshold photoelectron-photoion coincidence spectroscopy (TPEPICO) has been used to study the dissociation kinetics and thermochemistry of Me(4)Si, Me(6)Si(2), and Me(3)SiX, (X = Br, I) molecules. Accurate 0 K dissociative photoionization onsets for these species have been measured from the breakdown diagram and the ion time-of-flight distribution, both of them analyzed and simulated in terms of the statistical RRKM theory and DFT calculations. The average enthalpy of formation of trimethylsilyl ion, Delta fH(o)298K(Me(3)Si(+)) = 617.3 +/- 2.3 kJ/mol, has been determined from the measured onsets for methyl loss (10.243 +/- 0.010 eV) from Me(4)Si, and Br and I loss from Me(3)SiBr (10.624 +/- 0.010 eV) and Me(3)SiI (9.773 +/- 0.015 eV), respectively. The methyl loss onsets for the trimethyl halo silanes lead to Delta fH(o)298K(Me(2)SiBr(+)) = 590.3 +/- 4.4 kJ/mol and Delta fH(o)298K(Me(5)Si(2)(+)) = 487.6 +/- 6.2 kJ/mol. The dissociative photoionization of Me(3)SiSiMe(3) proceeds by a very slow Si-Si bond breaking step, whose rate constants were measured as a function of the ion internal energy. Extrapolation of this rate constant to the dissociation limit leads to the 0 K dissociation onset (9.670 +/- 0.030 eV). This onset, along with the previously determined trimethylsilyl ion energy, leads to an enthalpy of formation of the trimethylsilyl radical, Delta fH(o)298K(Me(3)Si(*)) = 14.0 +/- 6.6 kJ/mol. In combination with other experimental values, we propose a more accurate average value for Delta fH(o)298K(Me(3)Si(*)) of 14.8 +/- 2.0 kJ/mol. Finally, the bond dissociation enthalpies (DeltaH(298K)) Si-H, Si-C, Si-X (X=Cl, Br, I) and Si-Si are derived and discussed in this study.  相似文献   

19.
Threshold photoelectron-photoion coincidence spectroscopy (TPEPICO) has been used to investigate the gas-phase ionic dissociation energies and thermochemistry of Me4Ge and Me3GeX, (Me = methyl; X = Cl, Br) molecules. The 0 K dissociation onsets for these species have been measured from the breakdown diagram and the ion time-of-flight distributions, which were modeled with the statistical RRKM theory and DFT calculations. The measured 0 K dissociative photoionization onsets were as follows: Me3Ge+ + Me (9.826 +/- 0.010 eV); Me3Ge+ + Cl (10.796 +/- 0.040 eV); Me3Ge+ + Br (10.250 +/- 0.011 eV); Me2GeCl+ + Me (10.402 +/- 0.010 eV); and Me2GeBr+ + Me (10.333 +/- 0.020 eV). These onsets were used to obtain new values for delta(f)H(degrees)298 (in kJ/mol) of the neutral molecules Me3GeCl (-239.8 +/- 5.7) and Me3GeBr (-196.5 +/- 4.3), and also for the following ionic species: Me3Ge+ (682.3 +/- 4.1), Me2GeCl+ (621.1 +/- 5.8), and Me2GeBr+ (657.8 +/- 4.7).  相似文献   

20.
Dissociative photoionization mass spectrometry has been used to measure appearance energies for the 1-hydroxyethyl cation (CH(3)CH=OH(+)) formed from ethanol and 2-propanol. Molecular orbital calculations for these two unimolecular fragmentation reactions suggest that only methyl loss from ionized 2-propanol does not involve excess energy at the threshold. The experimental appearance energy of 10.31 +/- 0.01 eV for this latter process results in a 298 K heat of formation of 593.1 +/- 1.2 kJ mol(-1) for CH(3)CH=OH(+) and a corresponding absolute proton affinity for acetaldehyde of 770.9 +/- 1.3 kJ mol(-1). This value is supported by both high-level ab initio calculations and a proposed upward revision of the absolute isobutene proton affinity to 803.3 +/- 0.9 kJ mol(-1). A 298 K heat of formation of 52.2 +/- 1.9 kJ mol(-1) is derived for the tert-butyl radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号