首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
FT-IR and (1)H, (13)C, DEPT, HETCOR, COSY, and NOESY NMR spectra of 2-(1-cyclohexenyl)ethylamine (CyHEA) have been reported for the first time. The vibrational frequencies and (1)H, (13)C NMR chemical shifts of CyHEA (C(8)H(15)N) have been calculated by means of the Hartree-Fock (HF), Becke-Lee-Yang-Parr (BLYP) and Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-31 G(d) and 6-31 G(d,p) basis sets, respectively. The comparison between the experimental and the theoretical results indicates that density functional B3LYP method is superior to the scaled HF and BLYP approach for vibrational frequencies and predicting NMR properties.  相似文献   

2.
The solid phase FTIR and FT-Raman spectra of 4-butyl benzoic acid (4-BBA) have been recorded in the regions 400-4000 and 50-4000cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-311++G(d,p) as basis set. The vibrational frequencies were calculated for monomer and dimer by DFT method and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. (13)C and (1)H NMR spectra were recorded and (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was recorded in the region 200-400nm and the electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. The geometric parameters, energies, harmonic vibrational frequencies, IR intensities, Raman intensities, chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule.  相似文献   

3.
FT-IR and (1)H, (13)C, DEPT, COSY, NOESY, HETCOR, INADEQUATE NMR spectra of 1-phenylpiperazine (pp) have been reported for the first time except for its (1)H NMR spectrum. The vibrational frequencies and (1)H, (13)C NMR chemical shifts of pp (C(10)H(14)N(2)) have been calculated by means of the Hartree-Fock (HF) and Becke-Lee-Yang-Parr (BLYP) or Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-31G(d) and 6-31G(d,p) basis sets, respectively. Comparison between the experimental and the theoretical results indicates that density functional B3LYP method is superior to the scaled HF and BLYP approach for predicting vibrational frequencies and NMR properties.  相似文献   

4.
(1)H, (13)C, DEPT, COSY, NOESY and HETCOR NMR spectra of 4-(3-cyclohexen-1-yl)pyridine (4-Chpy) have been reported for the first time. (1)H and (13)C NMR chemical shifts of 4-Chpy (C(11)H(13)N) have been calculated by means of the Hartree-Fock (HF) and Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-311++G(d,p) basis set. Comparison between the experimental and the theoretical results indicate that density functional B3LYP method is superior to the scaled HF approach for predicting NMR properties.  相似文献   

5.
In this work, two important opioid antagonists, naltrexone and oxycodone, were prepared from thebaine and were characterized by IR, (1)H NMR and (13)C NMR spectroscopy. Moreover, computational NMR and IR parameters were obtained using density functional theory (DFT) at B3LYP/6-311++G** level of theory. Complete NMR and vibrational assignment were carried out using the observed and calculated spectra. The IR frequencies and NMR chemical shifts, determined experimentally, were compared with those obtained theoretically from DFT calculations, showed good agreements. The RMS errors observed between experimental and calculated data for the IR absorptions are 85 and 105 cm(-1), for the (1)H NMR peaks are 0.87 and 0.17 ppm and for those of (13)C NMR are 5.6 and 5.3 ppm, respectively for naltrexone and oxycodone.  相似文献   

6.
The influence of the position of nitro group toward the carboxylic group on the vibration structure of the molecule was estimated. Optimized geometrical structures were calculated (HF, B3PW91, B3LYP). Experimental and theoretical FT‐IR, FT‐Raman, and nuclear magnetic resonance (NMR) spectra of the title compounds were recorded and analyzed. The most important vibrational bands of nitro and carboxyl groups and the benzene ring were assigned. Wavenumbers and intensities for the three acids studied were compared and discussed. Data of chemical shifts in 1H and 13C NMR spectra of 2‐, 3‐, and 4‐nitrobenzoic acids were analyzed in comparison with benzoic acid molecule. The calculated parameters are compared with experimental characteristics of these molecules. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

7.
The FT-Raman and FT-IR spectra for benzenesulfonic acid methyl ester (BSAME) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) method by employing 6-311G (d, p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for sulfonic acid and some substituted sulfonic acids. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from DFT. The scaled vibrational frequencies at LSDA/B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the sulfonic acid are effected upon profusely with the methyl substitution in comparison to benzene sulfonamide and these differences are interpreted.  相似文献   

8.
《Vibrational Spectroscopy》2001,25(2):133-149
Equilibrium geometries, rotational constants, harmonic vibrational frequencies, infrared intensities, Raman activities, and 1H and 13C NMR spectra were calculated for 1,2-dimethylenecyclobutane and its less stable isomer 1,3-dimethylenecyclobutane by using MP2, DFT (B3PW91), and RHF theoretical methods involving the 6-311++G7 basis set.The properties calculated theoretically have been compared with the experimental values. The internal coordinates defined for both isomers were used in the potential energy distribution (PED) analysis. The theoretical vibrational and NMR spectra form the basis to differentiate particular compounds in reaction mixture.  相似文献   

9.
报道了(s)-多沙唑嗪的1H、13C、DEPT、1H-1H COSY等的NMR波谱数据, 并对1H、13C NMR信号进行了指认. (s)-多沙唑嗪分子中含有9个季碳原子, 其中绝大部分通过常规实验的方法难以指认. 应用量子化学规范不变原子轨道(GIAO)的Becke-3-Lee-Yang-Parr(B3LYP)和Hartree-Fock(HF)方法, 分别在6-21G基组下计算了标题化合物的13C NMR化学位移值. 计算结果表明, 理论计算数据与实验结果吻合较好, 可以帮助对(s)-多沙唑嗪季碳原子NMR位移信号进行指认.  相似文献   

10.
In this work, the experimental and theoretical vibrational spectra of pyrazole (PZ) and 3,5-dimethyl pyrazole (DMP) have been studied. FTIR and FT-Raman spectra of the title compounds in the solid phase are recorded in the region 4000-400 cm(-1) and 4000-50 cm(-1), respectively. The structural and spectroscopic data of the molecules in the ground state are calculated using density functional methods (B3LYP) with 6-311+G** basis set. The vibrational frequencies are calculated and scaled values are compared with experimental FTIR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete vibrational assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SM) method. 13C and 1H NMR chemical shifts results are compared with the experimental values.  相似文献   

11.
Optimized geometries and vibrational frequencies were calculated for the hexamolybdoaluminate(III), [AlIII(OH)6Mo6O18]3-, Anderson-type heteropolyanion with the HF, B3LYP, B3PW91, B3P86 and B1LYP methods of theory using the LanL2DZ, SDD and combination of LanL2DZ with 6-31G (d, p) basis sets. The agreement between the optimized and experimental geometries was in the decreasing order: HF, B3P86, B3PW91, B1LYP and B3LYP. The calculated frequencies by the B3LYP have the smallest mean root mean square (RMS) error. The effect of the basis set on the calculated bond lengths and frequencies by the density functional calculations (DFT) methods was minor. The agreement between the previously reported IR and Raman spectra and the calculated values is, in general, good.  相似文献   

12.
The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of 2-aminonicotinic acid (2-ANA) was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR (1H and 13C) spectra of 2-aminonicotinic acid and its alkali metal salts were recorded. Characteristic shifts and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons (1H NMR) and carbons (13C NMR) in the series of studied alkali metal 2-aminonicotinates (2-AN) were observed too.Optimized geometrical structures of the studied compounds were calculated by the B3LYP method using the 6-311++G** basis set. Aromaticity indices, atomic charges, dipole moments and energies were also calculated. The theoretical chemical shifts in 1H and 13C NMR spectra and theoretical wavenumbers and intensities of IR and Raman spectra were determined. The calculated parameters were compared to the experimental characteristics of the studied compounds.  相似文献   

13.
In this work, 3,4-bis(isoproylamino)cyclobut-3-ene-1,2-dione C(10)H(16)N(2)O(2) (I), was synthesized and characterized by (13)C NMR, (1)H NMR, FT-IR, UV-vis spectroscopy and single-crystal X-ray diffraction. DFT method with 6-31G(d,p) basis set has been used to calculate the optimized geometrical parameters, atomic charges, vibrational frequencies and chemical shift values. The calculated vibrational frequencies and chemical shift values are compared with experimental FT-IR and NMR spectra. The results of the calculation shows good agreement between experimental and calculated values of the compound I. The existence of N-H?O type intermolecular ve C-H?O type intramolecular hydrogen bonds can be deduced from differences between experimental and calculated results of FT-IR and NMR. In addition, the molecular electrostatic potential map and frontier molecular orbitals and electronic absorption spectra were performed at B3LYP/6-31G(d,p) level of theory. HOMO-LUMO electronic transition of 4.90 eV are derived from the contribution of the bands π→π* and n→π* The spectral results obtained from FT-IR, NMR and X-ray of I revealed that the compound I is in predominantly enamine tautomeric form, which was supported by DFT calculations.  相似文献   

14.
A comparison of eight density functional models for predicting the molecular structures, vibrational frequencies, infrared intensities, and Raman scattering activities of platinum(II) antitumor drugs, cisplatin and carboplatin, is reported. Methods examined include the pure density functional protocols (G96LYP, G96PW91, modified mPWPW and original PW91PW91), one‐parameter hybrid approaches (mPW1PW and mPW1LYP), and three‐parameter hybrid models (B3LYP and B3PW91), as well as the HF and MP2 levels of theory. Different effective core potentials (ECPs) and several basis sets are considered. The theoretical results are discussed and compared with the experimental data. It is remarkable that the mPW1PW protocol introduced by Adamo and Barone [J Chem Phys 1998, 108, 664], is clearly superior to all the remaining density functional methods (including B3LYP). The geometry and vibrational frequencies of cisplatin and carboplatin calculated with the mPW1PW method, and the ECP of Hay and Wadt (LanL2DZ basis set) are in better agreement with experiment than those obtained with the MP2 method. The use of more elaborated ECP and the enlargements of basis sets do not significantly improve the results. A clear‐cut assignments of the platinum‐ligand vibrations in cisplatin and carboplatin are presented. It is concluded that mPW1PW is the new reliable method, which can be used in predicting molecular structures and vibrational spectra of large coordination compounds containing platinum(II). © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 901–912, 2001  相似文献   

15.
The molecular geometry, vibrational frequencies, 1H and 13C NMR chemical shifts, UV-vis spectra, HOMO-LUMO analyses, molecular electrostatic potentials (MEPs), , thermodynamic properties and atomic charges of 3- and 4-Nitrobenzaldehyde oxime (C7H6N2O3) molecules have been investigated by using Hartree-Fock (HF) and density functional theory (DFT/B3LYP) methods with the 6-311++G(d, p) basis set. The calculated optimized geometric parameters (bond lengths and bond angles), the vibrational frequencies calculated and 13C and 1H NMR chemical shifts values for the mentioned compounds are in a very good agreement with the experimental data. Furthermore, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) have been simulated and the transition states, energy band gaps and molecular electrostatic potential (MEP) maps for each oxime compound have been determined. Additionally, we also report the infrared intensities and Raman activities for the compounds under study.  相似文献   

16.
The room temperature attenuated total reflection Fourier transform infrared spectrum of the 2-(4-methoxyphenyl)-1H-benzo[d]imidazole has been recorded with diamond/ZnSe prism. The conformational behaviour, structural stability of optimized geometry, frequency and intensity of the vibrational bands of the title compound were investigated by utilizing ab initio calculations with 6-311G** basis set at HF, B3LYP, BLYP, B3PW91 and mPW1PW91 levels. The harmonic vibrational frequencies were calculated and scaled values have been compared with experimental IR spectrum. The observed and the calculated frequencies are found to be in good agreement. The theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions using VEDA 4 program. Furthermore, the optimal uniform scaling factors calculated for the title compound are 0.9120, 0.9596, 0.9660, 0.9699, and 0.9993 for HF, mPW1PW91, B3PW91, B3LYP and BLYP methods, respectively.  相似文献   

17.
Molecular structure and vibrational frequencies of triformylmethane have been investigated by means of density functional theory (DFT) calculations. The geometrical parameters and vibrational frequencies obtained in the B3LYP, B3PW91, BLYP, BPW91, G96LYP and G96PW91 levels of DFT and compared with the corresponding parameters of malonaldehyde (MA). Fourier transform infrared spectra of triformylmethane and its deuterated analogue were clearly assigned. Theoretical calculations show that the hydrogen bond strength of triformylmethane is stronger than that of MA, which is in agreement with spectroscopic results.  相似文献   

18.
MF6- (M = As or Sb) salts of a simple derivative of the trithietanylium PhCSSS+, 1, were synthesized for the first time by the reaction of PhCS3Cl and AgMF6 in liquid SO2. 1SbF6 was characterized by IR, FT-Raman, and NMR spectroscopy, elemental analysis, and a preliminary X-ray crystal structure. 1AsF6 was characterized by 1H NMR and FT-Raman spectroscopy. The calculated (MPW1PW91/3-21G* or 6-31G*) geometries, 1H and 13C chemical shifts (MPW1PW91/6-311G(2DF)//MPW1PW91/3-21G*), and vibrational frequencies and intensities (MPW1PW91/6-31G*) were in satisfactory agreement with the observed values. The calculated pi type molecular orbitals of HCSSS+ (MPW1PW91/6-311+G*) and 1 (MPW1PW91/3-21G*) imply that the 6pi-CSSS+ ring has some aromatic character. 1SbF6 undergoes a metathesis reaction with NBu4Cl in liquid SO2 to give PhCS3Cl, which was characterized by vibrational spectroscopy and mass spectrometry. The evidence indicates that PhCS3Cl has the ionic formulation PhCSSS+ Cl- with significant cation-anion interactions in the solid state. ArCSSS+ SbF6- (Ar = 1-naphthyl), 14SbF6, was prepared from ArCS3Cl and AgSbF6, suggesting that the synthesis of MF6- (M = As or Sb) salts of RCSSS+ is potentially general for aryl derivatives. The structure of 14SbF6 was established by 1H and 13C NMR, IR, and FT-Raman spectroscopy, and theoretical calculations gave values in agreement with the experimental data.  相似文献   

19.
FT Raman and FTIR spectra of Naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) and its deuterated analogue are recorded. Comparison between the spectra obtained by two techniques, a series of density functional theory (DFT) calculations and the spectral behavior upon deuteration were used for the assignment of the vibrational spectra of this compound. The calculated vibrational frequencies by the B3LYP, B3PW91, G96LYP, G96P86, and MPWLYP density functionals are generally consistent with the observed spectra. Infrared and Raman vibrational transitions predicted by B3LYP/6-311++G** are reported for the titled compound and its deuterated analogous and the assignments are discussed. All experimental and theoretical results support a relatively weak hydrogen bond in naphthazarin (NZ), compared with that in the enol form of normal beta-diketones. The observed nuOH/nuOD and gammaOH/gammaOD appear at about 3060/2220 and 790/560 cm(-1), respectively, which are consistent with the calculated hydrogen bond geometry and proton chemical shift results. Two bands at about 350 and 290 cm(-1) are assigned to the O...O stretching modes belong to A1 and B2 species, respectively.  相似文献   

20.
In this work, the experimental and theoretical UV, NMR, and vibrational features of nicotinic acid N-oxide (abbreviated as NANO, C(6)H(5)NO(3)) were studied. The ultraviolet (UV) absorption spectrum of studied compound that dissolved in water was examined in the range of 200-800nm. FT-IR and FT-Raman spectra in solid state were observed in the region 4000-400cm(-1) and 3500-50cm(-1), respectively. The (1)H and (13)C NMR spectra in DMSO were recorded. The geometrical parameters, energies and the spectroscopic properties of NANO were obtained for all four conformers from density functional theory (DFT) B3LYP/6-311++G(d,p) basis set calculations. There are four conformers, C(n), n=1-4 for this molecule. The computational results identified the most stable conformer of title molecule as the C1 form. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. (13)C and (1)H nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies, were performed by CIS approach. Finally the calculation results were applied to simulate infrared, Raman, and UV spectra of the title compound which show good agreement with observed spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号