首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Glucose is determined by reaction with gluocose oxidase to produce hydrogen peroxide which is quantified via a chemiluminescence reaction with luminol. Sucrose, maltose, lactose and fructose are determined by enzymatic conversion to glucose (using invertase, amyloglucosidase, lactase. and glucose isomerase, respectively) and subsequent determination of the glucose, All enzymes are immobilized on controlled-pore glass and contained in flow-through reactors. For glucose, sucrose, and maltose the linear log-log working range 0.2 μM-1 mM, with a detection limit of 0.1 μM; for lactose and fructose the linear working range is 3 μM-1 mM with a detection limit of 1 μM. Assay time is 2 min.  相似文献   

2.
A novel multilayer gold nanoparticles/multiwalled carbon nanotubes/glucose oxidase membrane was prepared by electrostatic assembly using positively charged poly(dimethyldiallylammonium chloride) to connect them layer by layer. The modification process and membrane structures were characterized by atomic force microscopy, scanning electron microscopy and electrochemical methods. This membrane showed excellent electrocatalytic character for glucose biosensing at a relatively low potential (?0.2 V). The Km value of the immobilized glucose oxidase was 10.6 mM. This resulting sensor could detect glucose up to 9.0 mM with a detection limit of 128 μM and showed excellent analytical performance.  相似文献   

3.
Sangeun Cho  Chan Kang 《Electroanalysis》2007,19(22):2315-2320
A nonenzymatic glucose sensor with good selectivity for the ascorbic acid oxidation is presented. After the gold polycrystalline electrode was subjected to amalgamation treatment, two advantageous effects were observed. One is the enhancement of the surface roughness and the other is an increase in the catalytic current in the glucose oxidation. Besides the known first effect, the latter provided another advantageous effect in a fabrication of nonenzymatic glucose sensor. Using a gold electrode subjected to amalgamation treatment for 60 s, two calibration curves for glucose oxidation at two different potentials of ?0.1 V and 0.25 V were obtained and compared. At the potential of ?0.1 V, at which no ascorbic acid was oxidized and no interference effect was observed, a current sensitivity of 16 μA cm?2 mM?1 from zero to 10 mM glucose concentration range was obtained. At the other potential of 0.25 V, at which ascorbic acid was easily oxidized, a satisfactory calibration curve with negligible ascorbic acid interference was also obtained together with a more enhanced current sensitivity of 32 μA cm?2 mM?1.  相似文献   

4.
The present work describes the fabrication of paper‐based analytical devices (μPADs) by immobilization of glucose oxidase onto the screen printed carbon electrodes (SPCEs) for the electrochemical glucose detection. The sensitivity towards glucose was improved by using a SPCE prepared from homemade carbon ink mixed with cellulose acetate. In addition, 4‐aminophenylboronic acid (4‐APBA) was used as a redox mediator giving a lower detection potential for improvement selectivity. Under optimized condition, the detection limit was 0.86 mM. The proposed device was applied in real samples. This μPAD has many advantages including low sample consumption, rapid analysis method, and low device cost.  相似文献   

5.
Cao X  Wang N 《The Analyst》2011,136(20):4241-4246
Fe(2)O(3) was generally considered to be biologically and electrochemically inert, and its electrocatalytic functionality has been rarely realized directly in the past. In this work, Fe(2)O(3) nanowire arrays were synthesized and electrochemically characterized. The as prepared Fe(2)O(3) nanomaterial was proved to be an ideal electrode material due to the intrinsic peroxidase-like catalytic activity. The Fe(2)O(3) nanowire array modified glucose sensor exhibited excellent biocatalytic performance towards the oxidation of glucose with a response time of <6 s, a linear range between 0.015-8 mM, and sensitivity of 726.9 μA mM(-1)cm(-1). Additionally, a high sensing selectivity towards glucose oxidation in the presence of ascorbic acid (AA) and dopamine (DA) has also been obtained at their maximum physiological concentrations, which makes the Fe(2)O(3) nanomaterial promising for the development of effective electrochemical sensors for practical applications.  相似文献   

6.
Enzyme-functionalized gold nanowires for the fabrication of biosensors   总被引:3,自引:0,他引:3  
Gold nanowires were prepared by an electrodeposition strategy using nanopore polycarbonate (PC) membrane, with the average diameter of the nanowires about 250 nm and length about 10 microm. The nanowires prepared were dispersed into chitosan (CHIT) solution and stably immobilized onto glassy carbon electrode (GCE) surface. The electrochemical behavior of gold nanowire modified electrode and its application to the electrocatalytic reduction of hydrogen peroxide (H(2)O(2)) were investigated. The modified electrode allows low potential detection of hydrogen peroxide with high sensitivity and fast response time. Moreover, the good biocompatibility of nanometer-sized gold, the vast surface area of the nanowire-structure make it ideal for adsorption of enzymes for the fabrication of biosensors. Glucose oxidase was adsorbed onto the nanowire surface to fabricate glucose biosensor as an application example. The detection of glucose was performed in phosphate buffer (pH 6.98) at -0.2 V. The resulting glucose biosensor exhibited sensitive response, with a short response time (<8 s), a linear range of 10(-5)-2 x 10(-2) M and detection limit of 5 x 10(-6) M.  相似文献   

7.
A nanoporous gold wire electrode (NPGWE) was prepared using a published one‐step method from a 0.3 M oxalic acid at room temperature. It was found in this study that the surface morphology, including the pore size and the width of the ligaments, and thus the surface roughness of the NPGWE could be easily manipulated by controlling the solution stirring rate. The NPGWE was used for the study of electrochemical oxidation and determination of glucose in 0.1 M NaOH using cyclic voltammetry. The effect of two potential interferences chloride ion and ascorbic acid was assessed. The electrode showed a linear range of glucose concentration from 0.5 mM to 10 mM with a detection limit of 8 μM.  相似文献   

8.
An enzyme-free amperometric glucose sensor of gold nanoparticle-constituted nanotube array electrode is presented. The resulted gold nanotube array electrode with significantly enhanced surface roughness shows prominent catalytic activity toward the electrooxidation of glucose in a pH 7.4 phosphate buffer (PBS) solution and thus can be used to individually or simultaneously determine glucose and the common interfering molecule of ascorbic acid (AA). In the case of glucose detection, the amperometric responses show a linear relationship to glucose concentration in the range of 1 mM–42.5 mM with a detection limit down to 10 μM. The present non-enzymatic glucose electrochemical biosensor shows a good stability and reproducibility.  相似文献   

9.
《Electroanalysis》2017,29(5):1214-1221
A highly sensitive enzymeless electrochemical glucose sensor has been developed based on the simply prepared cathodized gold nanoparticle‐modified graphite pencil electrode (AuNP‐GPE). Cyclic voltammetry (CV) experiments show that AuNP‐GPE is able to oxidize glucose partially at low potential (around −0.27) whereas the bare GPE cannot oxidize glucose in the entire tested potential windows. Besides, fructose and sucrose cannot be oxidized at potential lower than +0.1 V at AuNP‐GPE. As a result, the glucose oxidation peak at around −0.27 V is suitable enough for selective detection of glucose in the presence of fructose and sucrose. Cathodization of AuNP‐GPE under optimum condition (‐1.0 V for 30 s) in the same glucose solution before voltammetric measurement enhanced glucose oxidation peak current around −0.27 V to achieve an efficient electrochemical sensor for glucose with a detection limit of 12 μM and dynamic range between 0.05 to 5.0 mM with a good linearity (R2= 0.999). Almost no interference effect was observed for sensing of glucose in the presence of ascorbic acid, alanine, phenylalanine, fructose, sucrose, and NaCl.  相似文献   

10.
A non-enzymatic amperometric glucose is reported that is based on an glassy carbon electrode modified with a Cu-CuO nanowire (NW) composite. The morphology and the composition of the nanowire were characterized by scanning electron microscopy and X-ray diffraction, respectively. The modified electrode efficiently catalyzes the oxidation of glucose at less-positive potential (0.30 V) in 0.10 M NaOH solution in the absence of any enzymes or redox mediators. The sensor was successfully used for the amperometric sensing of glucose. Linear response was obtained over the concentration range from 0.1 to 12 mM. The common interfering agents ascorbic acid and uric acid do not interfere with the determination of glucose. The modified electrode features high sensitivity, low working potential, excellent stability, and fast amperometric sensing of glucose. Thus it is promising for the future development of non-enzymatic glucose sensors.  相似文献   

11.
Here we report the first mediated pain free microneedle‐based biosensor array for the continuous and simultaneous monitoring of lactate and glucose in artificial interstitial fluid (ISF). The gold surface of the microneedles has been modified by electrodeposition of Au‐multiwalled carbon nanotubes (MWCNTs) and successively by electropolymerization of the redox mediator, methylene blue (MB). Functionalization of the Au‐MWCNTs/polyMB platform with the lactate oxidase (LOX) enzyme (working electrode 1) and with the FAD‐Glucose dehydrogenase (FADGDH) enzyme (working electrode 2) enabled the continuous monitoring of lactate and glucose in the artificial ISF. The lactate biosensor exhibited a high sensitivity (797.4±38.1 μA cm?2 mM?1), a good linear range (10–100 μM) with a detection limit of 3 μM. The performance of the glucose biosensor were also good with a sensitivity of 405.2±24.1 μA cm?2 mM?1, a linear range between 0.05 and 5 mM and a detection limit of 7 μM. The biosensor array was tested to detect the amount of lactate generated after 100 minutes of cycling exercise (12 mM) and of glucose after a normal meal for a healthy patient (10 mM). The results reveal that the new microneedles‐based biosensor array seems to be a promising tool for the development of real‐time wearable devices with a variety of sport medicine and clinical care applications.  相似文献   

12.
With the increasing interest in the health benefits arising from the consumption of dietary products rich in antioxidants, there exists a clear demand for easy-to-use and cost-effective tests that can be used for the identification of the antioxidant power of food products. Paper-based analytical devices constitute a remarkable platform for such expedient and low-cost assays with minimal external resources but efforts in this direction are still scarce. In this work we introduce a new paper-based device in the form of a sensor patch that enables the determination of antioxidant activity through analyte-driven on-paper formation of gold nanoparticles. The principle of detection capitalizes, for the first time, on the on-paper nucleation of gold ions to its respective nanoparticles, upon reduction by antioxidant compounds present in an aqueous sample. The ensuing chromatic transitions, induced on the paper surface, are used as an optical “signature” of the antioxidant strength of the solution. The response of the paper-based sensor was evaluated against a large variety of antioxidant species and the respective dose response curves were constructed. On the basis of these data, the contribution of each species according to its chemical structure was elucidated. For the analysis of real samples, a concentration-dependent colorimetric response was established against Gallic acid equivalents over a linear range of 10 μM–1.0 mM, with detection limits at the low and ultra-low μM levels (i.e. <1.0 μM) and satisfactory precision (RSD = 3.6–12.6%). The sensor has been tested for the assessment of antioxidant activity in real samples (teas and wines) and the results correlated well with commonly used antioxidant detection methods. Importantly, the sensor performed favorably for long periods of time when stored at moisture-free and low temperature conditions without losing its activity thus posing as an attractive alternative to the assessment of antioxidant activity without specialized equipment. The use of the sensor by non-experts for a rapid assessment of natural products in field testing is envisioned. Importantly, we demonstrate for the first time that analyte-mediated growth of nanomaterials directly on the paper surface could open new opportunities in paper-based analytical devices.  相似文献   

13.
《Electroanalysis》2006,18(15):1485-1491
A novel cheap and simple amperometric biosensor, based on the immobilization of glucose oxidase (GOD) into anionic clay; layered double hydroxides (LDHs) [Zn3‐Al‐Cl] is presented. GOD can be entrapped in the LDHs gel via electrostatic interaction. Amperometric detection of glucose with an unmediated sensor at 0.6 V (vs. SCE) results in a rapid response (5 s), a wide linear range of 0.001–12 mM, as well as good operational stability. The low detection limit was 0.1 μM at 3σ. The apparent Michaelis‐Menten constant (K is 4.4 mM. The general interferences that coexisted in blood serum do not affect glucose determination, except for uric acid. In addition, optimization of the biosensor construction and the effects of the applied potential on the amperometric response of the sensor were investigated and discussed herein.  相似文献   

14.
A non-enzymatic sensor was developed for the determination of glucose in alkaline medium by anodisation of copper in sodium potassium tartrate solution. The morphology of the modified copper electrode was studied by scanning electron microscopy, and its electrochemical behavior by cyclic voltammetry and electrochemical impedance spectroscopy. The electrode enables direct electrocatalytic oxidation of glucose on a CuO/Cu electrode at 0.7 V in 0.1 M sodium hydroxide. At this potential, the sensor is highly selective to glucose even in the presence of ascorbic acid, uric acid, or dopamine which are common interfering species. The sensor displays a sensitivity of 761.9 μA mM?1 cm?2, a linear detection range from 2 μM to 20 mM, a response time of <1 s, and a detection limit of 1 μM (S/N = 3). It was tested for determination of glucose level in blood serum.  相似文献   

15.
Gold microelectrodes modified via easy method by gold nanostructures were studied as an ideal substrate for non-enzymatic glucose detection. The results confirmed that spike-like nanostructure displays the best electrocatalytic activity because of higher amount of edges. Results prove that modified electrode is able to detect glucose in two linear ranges from 100–500 μM and 0.5–30 mM, with limit of detection (48 μM), high sensitivities for both linear ranges (1.7 μA/mM and 2.4 μA/mM), and good stability. In addition, modified electrodes were able to detect glucose in blood serum. This work demonstrates glucose detection on miniaturised system.  相似文献   

16.
Nanostructured NiCu layered double hydroxides (NiCu LDHs) are synthesized in situ on polypyrrole nanotubes through convenient co-precipitation and hydrothermal synthesis. The nanostructured composite (NiCu LDHs/PPy) shows high electrocatalytic activities towards the glucose oxidation reaction in alkaline electrolyte so that a nonenzymatic glucose sensor is developed. It is demonstrated that the sensor offers a wide linear range from 1.5 μM to 1.0 mM with a high sensitivity of 525.8 μA mM−1 cm−2 and a low limit of detection of 66 nM (S/N = 3). The nonenzymatic sensor has been successfully applied to real blood samples for glucose monitoring with high accuracy.  相似文献   

17.
An underpotential deposition (UPD) replacement tactic was employed to design a Pd overlayer on gold (Au) nanoparticles electrodeposited on a carbon ionic liquid electrode (CILE). Pd/Au/CILE was applied as an amperometric sensor for the determination of formaldehyde in aqueous solutions. The sensor displayed two linear ranges from 15 µM–1.4 mM and 1.4–56.7 mM of formaldehyde. The limit of detection was 3 µM of formaldehyde and the sensitivity of the sensor was 2.35 µA mM?1, using the calibration graph in the lower range. The presence of 20 mM of formic acid and methanol and 10 mM ethanol did not interfere with the determination of formaldehyde solution.  相似文献   

18.
A new H2O2 enzymeless sensor has been fabricated by incorporation of thionin onto multiwall carbon nanotubes (MWCNTs) modified glassy carbon electrode. First 50 μL of acetone solution containing dispersed MWCNTs was pipetted onto the surface of GC electrode, then, after solvent evaporations, the MWCNTs modified GC electrode was immersed into an aqueous solution of thionin (electroless deposition) for a short period of time <5–50 s. The adsorbed thin film of thionin was found to facilitate the reduction of hydrogen peroxide in the absence of peroxidase enzyme. Also the modified electrode shows excellent catalytic activity for oxygen reduction at reduced overpotential. The rotating modified electrode shows excellent analytical performance for amperometric determination of hydrogen peroxide, at reduced overpotentials. Typical calibration at ?0.3 V vs. reference electrode, Ag/AgCl/3 M KCl, shows a detection limit of 0.38 μM, a sensitivity of 11.5 nA/μM and a liner range from 20 μM to 3.0 mM of hydrogen peroxide. The glucose biosensor was fabricated by covering a thin film of sol–gel composite containing glucose oxides on the surface of thionin/MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 1 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. In addition biosensor can reach 90% of steady currents in about 3.0 s and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) is eliminated. The usefulness of biosensor for direct glucose quantification in human blood serum matrix is also discussed. This sensor can be used as an amperometric detector for monitoring oxidase based biosensors.  相似文献   

19.
Glucose and sucrose are simultaneously determined by using a glucose-sensing enzyme electrode combined with a cell that contains immobilized invertase. The electrode current changes linearly with time for several minutes from ca. 1 min after the addition of a glucose-sucrose mixture. The concentration of sucrose (60 μM-6 mM) is determined from the rate of current change in the linear region, and that of glucose (5 μM-1 mM) is determined by extrapolating the straight current-time line to t=0.45 min and by measuring the intercept on the vertical (current) axis at t=0.45 min. The relative standard deviations are 1.8% for glucose and 3.7% for sucrose (n=10). More than 20 food samples can be analysed in 1 h.  相似文献   

20.
X Yang  J Bai  Y Wang  X Jiang  X He 《The Analyst》2012,137(18):4362-4367
Silver nanowires synthesized through a polyol process using polyvinylpyrrolidone as protection (PVP-AgNWs) were used as a new electrode material for constructing a sensor. Hydrogen peroxide (H(2)O(2)) and glucose were used as analytes to demonstrate the sensor performance of the PVP-AgNWs. It is found that the PVP-AgNWs-modified glassy carbon electrode (PVP-AgNWs/GCE) exhibits remarkable catalytic performance toward H(2)O(2) reduction. This sensor has a fast amperometric response time of less than 2 s and the catalytic current is linear over the concentration of H(2)O(2) ranging from 20 μM to 3.62 mM (R = 0.998) with a detection limit of 2.3 μM estimated on a signal-to-noise ratio of 3. A glucose biosensor was constructed by immobilizing glucose oxidase (GOD) onto the surface of the PVP-AgNWs/GCE. The resultant glucose biosensor can be used for glucose detection in human blood serum with a sensitivity of 15.86 μA mM(-1) cm(-2) and good selectivity and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号