首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past decade, tremendous progress has been made in organic field-effect transistors (OFETs). Their real applications require further development of device performance. OFETs consist of organic semiconductors, dielectric layers, and electrodes. Organic semiconductors play a key role in determining the device characteristics. The properties of the organic semiconductors, such as molecular structure and packing, as well as molecular energy levels, can be properly controlled by molecular design. Therefore, we designed and synthesized a series of organic molecules. The synthesized organic semiconductors exhibit excellent field-effect properties due to strong intermolecular interactions and proper molecular energy levels. Meanwhile, the influence of the device fabrication process, organic semiconductor/dielectric layer interface, and organic layer/electrode contact on the device performance was investigated. A deep understanding of these factors is helpful to improve field-effect properties. Furthermore, single-crystal field-effect transistors are highlighted because the single-crystal-based FETs can provide an accurate conducting mechanism of organic semiconductors and higher device performance as compared with thin film FETs.  相似文献   

2.
The panchromatic light absorption and excellent charge carrier transport properties in organo lead halide perovskites allowed to achieve an unprecedented power conversion efficiency in excess of 25 % for thin film photovoltaics fabrication. To understand the underlying phenomena, various comprehensive set of optical and electrical techniques have been employed to investigate the charge carrier dynamics in such devices. In this perspective, we aim to summarize the electrical transport properties of perovskite thin films by using (i) impedance spectroscopy (IS), (ii) space charge limited current (SCLC), (iii) field‐effect transistors (FETs) and (iv) time‐of‐flight (TOF) methods. We have deliberated various equivalent circuit used to model the perovskite solar cells by means of IS. The SCLC technique provide vital electrical parameters such as mobility, activation energy, traps density and distribution, carrier concentration, density of states, etc. The TOF technique measures mobility as a primary parameter while the FETs configuration provide a valuable insight into the in‐plane charge transport in perovskites thin films. We believe that these notable understanding will provide insights into charge carrier dynamics in perovskite materials and devices.  相似文献   

3.
本文简要地介绍了有机半导体中载流子迁移率的几种模型,着重阐述了测量有机半导体中载流子迁移率的各种方法的测试原理。主要有如下几种:稳态(CW)直流电流-电压特性法(steady-state DC J-V),飞行时间法(time of flight, TOF),瞬态电致发光法(transient electroluminescence,transient EL),瞬态电致发光法的修正方法即双脉冲方波法和线性增压载流子瞬态法(carrier extraction by linearly increasing voltage,CELIV),暗注入空间电荷限制电流(dark injection space charge limited current, DI SCLC),场效应晶体管方法(field-effect transistor,FET),时间分辨微波传导技术(time-resolved microwave conductivity technique,TRMC),电压调制毫米波谱(voltage-modulated millimeter-wave spectroscopy,VMS)光诱导瞬态斯塔克谱方法(photoinduced transient Stark spectroscopy),阻抗(导纳)谱法(impedance(admittance)spectroscopy)。说明了各种实验方法的应用范围、使用条件和优缺点。  相似文献   

4.
The electrical conductivity of organic semiconductors can be enhanced by orders of magnitude via doping with strong molecular electron acceptors or donors. Ground‐state integer charge transfer and charge‐transfer complex formation between organic semiconductors and molecular dopants have been suggested as the microscopic mechanisms causing these profound changes in electrical materials properties. Here, we study charge‐transfer interactions between the common molecular p‐dopant 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane and a systematic series of thiophene‐based copolymers by a combination of spectroscopic techniques and electrical measurements. Subtle variations in chemical structure are seen to significantly impact the nature of the charge‐transfer species and the efficiency of the doping process, underlining the need for a more detailed understanding of the microscopic doping mechanism in organic semiconductors to reliably guide targeted chemical design. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 58–63  相似文献   

5.
This review, which has a very deep tutorial nature to it, aims to collect a range of experimental techniques that are relevant to charge transport and place them all under one device‐physics framework. The types of semiconductors in mind are low mobility ones with an emphasis toward organic semiconductors. As this contribution needs to have a finite length, there are many important methods or techniques not covered in this review. My hope is that by covering methods that are very different in nature, it would make it easier to extend the understanding or intuition collected through this review to methods/techniques not mentioned. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1119–1152  相似文献   

6.
Herein, we focus on the principles of photoconduction in random semiconductors—the key processes being optical generation of charge carriers and their subsequent transport. This is not an overview of the current work in this area, but rather a highlight of elementary processes, their involvement in modern devices and a summary of recent developments and achievements. Experimental results and models are discussed briefly to visualize the mechanism of optical charge generation in pure and doped organic solids. We show current limits of models based on the Onsager theory of charge generation. After the introduction of experimental techniques to characterize charge transport, the hopping concept for transport in organic semiconductors is outlined. The peculiarities of the transport of excitons and charges in disorderd organic semiconductors are highlighted. Finally, a short discussion of ultrafast transport and single chain transport completes the review.  相似文献   

7.
Charge carrier dynamics in an organic semiconductor can often be described in terms of charge hopping between localized states. The hopping rates depend on electronic coupling elements, reorganization energies, and driving forces, which vary as a function of position and orientation of the molecules. The exact evaluation of these contributions in a molecular assembly is computationally prohibitive. Various, often semiempirical, approximations are employed instead. In this work, we review some of these approaches and introduce a software toolkit which implements them. The purpose of the toolkit is to simplify the workflow for charge transport simulations, provide a uniform error control for the methods and a flexible platform for their development, and eventually allow in silico prescreening of organic semiconductors for specific applications. All implemented methods are illustrated by studying charge transport in amorphous films of tris-(8-hydroxyquinoline)aluminum, a common organic semiconductor.  相似文献   

8.
State‐of‐the‐art solution‐processed organic field‐effect transistors typically use polycrystalline organic semiconductor thin films as the active layer. Although it is widely regarded that boundaries between polycrystalline domains are a likely source of charge trapping limiting charge carrier mobility, little is known about the detailed domain structure of such films. Furthermore, variations in local order particularly in conjugated polymer films are likely to further impede charge transport. In recent years a number of techniques have been exploited that are able to provide information regarding local domain orientation and molecular order in polycrystalline organic thin films. These techniques have provided new information regarding the nature of domain structure providing an opportunity to directly evaluate the influence of domain structure on device operation. This article aims to provide a timely review of the experimental approaches used to date and provide a perspective for future work. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

9.
Herein, we report a new family of naphthaleneamidinemonoimide-fused oligothiophene semiconductors designed for facile charge transport in organic field-effect transistors (OFETs). These molecules have planar skeletons that induce high degrees of crystallinity and hence good charge-transport properties. By modulating the length of the oligothiophene fragment, the majority carrier charge transport can be switched from n-type to ambipolar behavior. The highest FET performance is achieved for solution-processed films of 10-[(2,2'-bithiophen)-5-yl]-2-octylbenzo[lmn]thieno[3',4':4,5]imidazo[2,1-b][3,8]phenanthroline-1,3,6(2H)-trione (NDI-3 Tp), with optimized film mobilities of 2×10(-2) and 0.7×10(-2) cm(2) V(-1) s(-1) for electrons and holes, respectively. Finally, these planar semiconductors are compared with their twisted-skeleton counterparts, which exhibit only n-type mobility, in order to understand the origin of the ambipolarity in this new series of molecular semiconductors.  相似文献   

10.
Conjugated polymers represent a promising class of organic semiconductors with potential applications in a variety of molecular devices. Poly(3-alkylthiophene)s, in particular, are garnering interest due to their large charge carrier mobility and band gap in the visible region of the spectrum. Defects play a pivotal role in determining the performance of polymer electronics, and yet the function of specific types of defects is still largely unknown. Density functional theory calculations of alkyl-substituted oligothiophenes are used to isolate the effect of static inter-ring torsion defects on key parameters such as electronic coupling between rings and band gap. Results have potential implications both for the fundamental understanding of intramolecular charge transport and for improving processing in organic devices.  相似文献   

11.
A prototypical semiconducting bicomponent system consisting of a conjugated polymer, that is, poly(3‐hexylthiophene) (P3HT), blended with a small thiophene containing conjugated molecule, that is, an alkyl‐substituted bisphenyl‐bithiophene [phenylene–thiophene–thiophene–phenylene (PTTP)], has been used as an electroactive active layer in field‐effect transistors (FETs). The self‐assembly of this bicomponent system at surfaces has been studied at different length scales, from the nanoscale to the macroscale, and compared with the behavior of monocomponent films of PTTP and P3HT. The correlation between morphology and electric properties of the semiconducting material is explored by fabricating prototypes of FETs varying the relative concentrations of the two‐component blend. The maximum charge carrier mobility value, achieved with a few percent of PTTP component, is not simply due to a uniform dispersion of the molecules in the polymer matrix, but rather to the generation of very long percolation paths, whose composition and electrical properties can be tuned with the PTTP concentration. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

12.
Probing the role of the first monolayer in the evolution of the film polymer microstructure is essential for the fundamental understanding of the charge carrier transport in polymeric field-effect transistors (FETs). The monolayer and its subsequent microstructure of a conjugated polymer [poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene), PBTTT] film were fabricated via solution deposition by tuning the dip-coating speed and were then studied as accumulation and transporting layers in FETs. Investigation of the microstructure of the layers prepared at different coating velocities revealed that the monolayer serves as an important base for further development of the film. Significant improvement of the charge carrier transport occurs only at a critical multilayer network density that establishes the required percolation pathways for the charge carriers. Finally, at a low dip-coating speed, the polymer chains are uniaxially oriented, yielding pronounced structural anisotropy and high charge carrier mobilities of 1.3 cm(2) V(-1) s(-1) in the alignment direction.  相似文献   

13.
Compact molecular packing with short π-π stacking and large π-overlap in organic semiconductors is desirable for efficient charge transport and high carrier mobility.Thus charge transport anisotropy along different directions is commonly observed in organic semiconductors.Interestingly,in this article,we found that comparable charge transport property were achieved based on the single crystals of a bis-fused tetrathiafulvalene derivative(EM-TTP) compound along two interaction directions,that is,the multiple strong S…S intermolecular interactions and the π-π stacking direction,with the measured electrical conductivity and hole mobility of 0.4 S cm~(-1),0.94 cm~2 V~(-1) s~(-1) and 0.2 S cm~(-1),0.65 cm2 V~(-1) s~(-1),respectively.This finding provides us a new molecular design concept for developing novel organic semiconductors with isotropic charge transport property through the synergistic effect of multiple intermolecular interactions(such as S…S interactions) and π-π stacking.  相似文献   

14.
Two furan‐flanked polymers poly{3,6‐difuran‐2‐yl‐2,5‐di(2‐octyldodecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐alt‐thienylenevinylene} (PDVFs), with a highly π‐extended diketopyrrolopyrrole backbone, are developed for solution‐processed high‐performance polymer field‐effect transistors (FETs). Atomic force microscopy and grazing incidence X‐ray scattering analyses indicate that PDVF‐8 and PDVF‐10 films exhibit a similar nodular morphology with the ultrasmall lamellar distances of 16.84 and 18.98 Å, respectively. When compared with the reported polymers with the same alkyl substitutes, this is the smallest d‐spacing value observed to date. This closed lamellar crystallinity facilitates charge carrier transport. Therefore, polymer thin‐film transistors fabricated from as‐spun PDVF‐8 films exhibit a high hole mobility exceeding 1.0 cm2 V?1 s?1 with a current on/off ratio above 106. After annealing treatment at 100 °C in air, the highest hole mobility of PDVF‐8‐based FETs was significantly improved to 1.90 cm2 V?1 s?1, which is among the highest values of the reported FET devices fabricated from polymer thin films based on this mild annealing temperature. In contrast, long alkyl‐substituted PDVF‐10 exhibited a relatively low hole mobility of 1.65 cm2 V?1 s?1 mainly resulting from low molecular weight. This work demonstrated that PDVFs would be promising semiconductors for developing cost‐effective and large‐scale production of flexible organic electronics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1970–1977  相似文献   

15.
We measured the charge carrier mobilities for two isomers of fluorenone-based liquid crystalline organic semiconductors from their isotropic down to crystalline states through one or two mesophases. Improved charge transport properties of melt-processed crystalline films were obtained for the isomer exhibiting a highly ordered mesophase below its disordered smectic phase.  相似文献   

16.
Conjugated polymers are promising candidates for next‐generation low‐cost flexible electronics. Field‐effect transistors comprising conjugated polymers have witnessed significant improvements in device performance, notably the field‐effect mobility, in the last three decades. However, to truly make these materials commercially competitive, a better understanding of charge‐transport mechanisms in these structurally heterogeneous systems is needed for providing systematic guides for further improvements. This review assesses the key microstructural features of conjugated polymers across multiple length scales that can influence charge transport, with special attention given to the underlying polymer physics. The mechanistic understanding from collective experimental and theoretical studies point to the importance of interconnected ordered domains given the macromolecular nature of the polymeric semiconductors. Based on the criterion, optimization to improve charge transport can be broadly characterized by efforts to (a) promote intrachain transport, (b) establish intercrystallite connectivity, and (c) enhance interchain coupling. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1559–1571  相似文献   

17.
To obtain novel low‐bandgap materials with tailored hole‐transport properties and extended absorption, electron rich 3,4‐ethylenedioxythiophene is introduced as a comonomer in diketopyrrolo[3,4‐c]pyrrole copolymers with different aryl flanking units. The polymers are characterized by absorption and photoluminescence spectroscopy, dynamic scanning calorimetry, cyclic voltammetry, and X‐ray diffraction. The charge transport properties of these new materials are studied carefully using an organic field effect transistor geometry where the charge carriers are transported over a narrow channel at the semiconductor/dielectric interface. These results are compared to bulk charge carrier mobilities using space‐charge limited current (SCLC) measurements, in which the charge carrier is transported through the complete film thickness of several hundred nanometers. Finally, charge carrier mobilities are correlated with the electronic structure of the compounds. We find that in particular the thiophene‐flanked copolymer PDPP[T]2‐EDOT is a very promising candidate for organic photovoltaics, showing an absorption response in the near infrared region with an optical bandgap of 1.15 eV and a very high bulk hole mobility of 2.9 × 10?4 cm2 V?1 s?1 as measured by SCLC. This value is two orders of magnitudes higher than SCLC mobilities reported for other polydiketopyrrolopyrroles and is in the range of the well‐known hole transporting polymer poly(3‐hexylthiophene). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 639–648  相似文献   

18.
The carrier transport properties in nanocrystalline semiconductors and organic materials play a key role for modern organic/inorganic devices such as dye-sensitized (DSC) and organic solar cells, organic and hybrid light-emitting diodes (OLEDs), organic field-effect transistors, and electrochemical sensors and displays. Carrier transport in these materials usually occurs by transitions in a broad distribution of localized states. As a result the transport is dominated by thermal activation to a band of extended states (multiple trapping), or if these do not exist, by hopping via localized states. We provide a general view of the physical interpretation of the variations of carrier transport coefficients (diffusion coefficient and mobility) with respect to the carrier concentration, or Fermi level, examining in detail models for carrier transport in nanocrystalline semiconductors and organic materials with the following distributions: single and two-level systems, exponential and Gaussian density of states. We treat both the multiple trapping models and the hopping model in the transport energy approximation. The analysis is simplified by thermodynamic properties: the chemical capacitance, C(mu), and the thermodynamic factor, chi(n), that allow us to derive many properties of the chemical diffusion coefficient, D(n), used in Fick's law. The formulation of the generalized Einstein relation for the mobility to diffusion ratio shows that the carrier mobility is proportional to the jump diffusion coefficient, D(J), that is derived from single particle random walk. Characteristic experimental data for nanocrystalline TiO(2) in DSC and electrochemically doped conducting polymers are discussed in the light of these models.  相似文献   

19.
The dynamic disorder model for charge carrier transport in organic semiconductors has been extensively studied in recent years. Although it is successful on determining the value of bandlike mobility in the organic crystalline materials, the incoherent hopping, the typical transport characteristic in amorphous molecular semiconductors, cannot be described. In this work, the decoherence process is taken into account via a phenomenological parameter, say, decoherence time, and the projective and Monte Carlo method are applied for this model to determine the waiting time and thus the diffusion coefficient. It is obtained that the type of transport is changed from coherent to incoherent with a sufficiently short decoherence time, which indicates the essential role of decoherence time in determining the type of transport in organics. We have also discussed the spatial extent of carriers for different decoherence time, and the transition from delocalization (carrier resides in about 10 molecules) to localization is observed. Based on the experimental results of spatial extent, we estimate that the decoherence time in pentacene has the order of 1 ps. Furthermore, the dependence of diffusion coefficient on decoherence time is also investigated, and corresponding experiments are discussed.  相似文献   

20.
Organic semiconductors (OSCs) are strong contenders for use in printed, flexible electronics. Although organic electronic materials have been studied for many years, the physics of charge transport is still under investigation. This is in part due to variability resulting from the large variety of molecules that can be synthesized and inconsistency in electrical characterization due to device and processing conditions. Molecular ordering in OSCs is known to alter the charge transport characteristics and attention to long range and short range ordering provides clues as to the nature of transport pathways. Here, we study ordered regioregular poly(3‐hexylthiophene‐2,5‐diyl) films carefully prepared to obtain a set of three samples with incrementally increasing order on identical transistor architectures. Ordering was characterized using a variety of short and long range techniques to probe the coherence and number of crystallites formed during processing, and the correlation between these different measures of order are quantified. We observe three changes in transistor behavior that show a shift from non‐ideal to more textbook‐like characteristics with increasing order: reduction of the contact resistance, shift to field‐independent mobility, and a shift from a diode‐like (S‐shaped) to linear response at low lateral fields. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1063–1074  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号