首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new methodology to investigate the failure of elastomers in a confined geometry has been developed and applied to model end-linked polyurethane elastomers. The experimental in situ observations show that the elastomers fail by the growth of a single cavity nucleated in the region of maximum hydrostatic stress. Tests carried out at different temperatures for the same elastomer show that the critical stress at which this crack grows is not proportional to the Young's modulus E but depends mainly on the ratio between the mode I fracture energy GIC and E. A reasonable fit of the data can be obtained with a model of cavity expansion by irreversible fracture calculating the energy release rate by finite elements with a strain hardening constitutive equation. Comparison between different elastomers shows that the material containing both entanglements and crosslinks is both tougher in mode I and more resistant to cavitation relative to its elastic modulus. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48:1409–1422, 2010  相似文献   

2.
Surface wrinkles are interesting since they form spontaneously into well‐defined patterns. The mechanism of formation is well‐studied and is associated with the development of a critical compressive stress that induces the elastic instability. In this work, we demonstrate surface wrinkles that dynamically change in response to a stimulus can improve interfacial adhesion with a hydrogel surface through the dynamic evolution of the wrinkle morphology. We observe that this control is related to the local pinning of the crack separation pathway facilitated by the surface wrinkles during debonding, which is dependent on the contact time with the hydrogel. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

3.
The principal criteria used to predict cavitation in rubber materials are reviewed, and experimental evidence is recalled for three different configurations: in the bulk, in the vicinity of a rigid particle, and in small rubber particles embedded in a rigid polymer matrix. Two major classes of cavitation criteria are defined, those based on an elastic instability (i.e., related to a stress state and finite strains) and those based on the energy balance (i.e., involving surface energies). The different criteria, in which various hyperelastic behavior laws are considered, are compared in numerical applications, and the tendencies are derived. The particular case of accounting for the surface tension of the rubber, a parameter common to the stress state and the energy balance, is treated in detail. It appears that the understanding of the genesis of a microcavity in a rubber material, when no pre‐existing flaw is assumed, still constitutes a difficulty for the analysis of mechanical damage in polymers containing a rubber phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2081–2096, 2001  相似文献   

4.
The mechanical performance of semicrystalline polymers is strongly dependent on their underlying microstructure, consisting of crystallographic lamellae and amorphous layers. In line with that, semicrystalline polymers have previously been modeled as two and three‐phase composites, consisting of a crystalline and an amorphous phase and, in case of the three‐phase composite, a rigid‐amorphous phase between the other two, having a somewhat ordered structure and a constant thickness. In this work, the ability of two‐phase and three‐phase composite models to predict the elastic modulus of semicrystalline polymers is investigated. The three‐phase model incorporates an internal length scale through crystalline lamellar and interphase thicknesses, whereas no length scales are included in the two‐phase model. Using linear elastic behavior for the constituent phases, a closed form solution for the average stiffness of the inclusion is obtained. A hybrid inclusion interaction model has been used to compute the effective elastic properties of polyethylene. The model results are compared with experimental data to assess the capabilities of the two‐ or three‐phase composite inclusion model. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

5.
The mechanical behavior of polymer materials is strongly dependent on polymer structure and morphology of the material. The latter is determined mainly by processing and thermal history. Temperature-dependent on-line X-ray scattering during deformation enables the investigation of deformation processes, fatigue and failure of polymers. As an example, investigations on polypropylene are presented. By on-line X-ray scattering with synchrotron radiation, a time resolution in the order of seconds and a spatial resolution in the order of microns can be achieved. The characterization of the crystalline and amorphous phases as well as the study of cavitation processes were performed by simultaneous SAXS and WAXS. The results of scattering experiments are complemented by DSC measurements and SEM investigations. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1574–1586, 2010  相似文献   

6.
The electrical bending instability in charged liquid jets is the phenomenon determining the process of electrospinning. A model of this phenomenon is lacking however, mostly due to the complicated interplay between the viscosity and elasticity of the solution. To investigate the bending instability, we performed electrospinning experiments with a solution of polyethylene oxide in water/ethanol. Using a fast camera and sensitive multimeter, we deduced an experimental dispersion relation describing the helix pitch length as a function of surface charge. To understand this relation, we developed a theoretical model for the instability for a wide range of visco‐elastic materials, from conducting to nonconducting. The theoretical dispersion relation shows good agreement with the experimental results. Using the new model, we find that the elastic tension in the visco‐elastic threads plays an important role in triggering the instability. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1036–1042  相似文献   

7.
In this article, a connection is made between the behavior of thin layers of Newtonian liquids under tensile loading conditions and the behavior of highly deformable elastic or viscoelastic solids, which are more commonly used as adhesives. The behavior of Newtonian liquids is understood in the most quantitative detail and serves as a starting point for understanding the origins of fingering and cavitation instabilities that appear when the tensile deformation rates applied to these layers are sufficiently large. Similar instabilities appear in solid systems and can be attributed to common features of the stress distribution for incompressible liquids and solids. A unifying treatment is presented that can be used to understand the overall deformation behavior and adhesive performance of a wide variety of solid and liquid systems that are typically applied as thin layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4023–4043, 2004  相似文献   

8.
The conditions for the occurrence of instability during neck propagation in polymers are theoretically studied. The mechanism behind this phenomenon is concerned with the thermomechanical instability of neck propagation, which is provided by the transformation of a sample’s stored energy of elastic deformation into heat during tensile drawing of the plastic polymer. An analytical criterion for the occurrence of instability is formulated. The critical length of the sample, below which self-oscillations are not excited, is inversely proportional to strain rate and directly proportional to the coefficient of thermal conductivity and the elastic modulus of the material. Two principal distinctions between thermomechanical and mechanical instabilities are revealed. The first distinction is the existence of elastic energy (length), below which oscillations do not occur; the second is the fact that the interval of thermomechanical instability is wider than that of mechanical instability.  相似文献   

9.
When a saturated gel immersed in the same liquid is suddenly brought into contact with a smooth rigid indenter, the liquid cannot immediately flow out of the pores, and so the gel initially behaves as an incompressible material. This gives rise to a pressure gradient in the liquid phase and the liquid flows until the pressure in it goes to zero everywhere, and all the stresses are transferred to the elastic network. As a result of the flow, the force needed to maintain a constant contact area relaxes with time. In this work, we study the feasibility of using an indentation test to measure this time‐dependent force and to determine the elastic modulus, the Poisson's ratio, and the permeability, Dp, of the network. Specifically, we consider a two‐dimensional Hertz contact problem of a rigid circular cylinder indenting on a half space consisting of an elastic gel. The network of the gel is assumed to be linearly elastic and isotropic, and liquid flow within the gel is assumed to obey Darcy's law, which states that the flux is proportional to the pressure gradient. Exact expressions are obtained for the initial and final force required to maintain a given contact length. These expressions allow us to determine the elastic constants of the network. The permeability of the network can be obtained from the time‐dependent relaxation of the load, which is obtained by solving the exact continuum equations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 359–370, 2006  相似文献   

10.
We have performed dynamic light scattering experiments on poly(acrylamide)‐poly(acrylic acid) copolymer gels with controlled crosslink density and copolymer composition, by varying the temperature, amount and valency of added salt, pH, and solvent quality. Our systematic study provides several insights. The correlation length for the monomer density fluctuations, as inferred from the measured diffusion coefficient, is too small to be identified as the mesh size of the gel. The correlation length in an ionic gel, which is found to be smaller than that for an equivalent gel without ionization. Comparison of swelling ratio with the diffusion coefficient shows that these quantities are not simply geometrically related to each other. When a discontinuous volume phase transition is induced by gradually varying the solvent quality, the diffusion coefficient exhibits a pretransitional reduction by two orders of magnitude even before the gel collapse. These findings provoke a need for new theoretical approaches for describing the elastic modes of polyelectrolyte gels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

11.
The combination of both chain‐internal/chain‐end latent crosslinking in a single thermoset polymer system is the subject of this study. A series of linear carbosiloxane/hydrocarbon homopolymers were synthesized by metathesis polycondensation, polymers which serve as the soft phase in the target chain‐internal/chain‐end latent crosslinked materials. These carbosiloxane/hydrocarbon “soft phase” homopolymers exhibited excellent performance parameters, displaying purely amorphous character with glass transition temperatures ranging between ?104 °C and ?90 °C depending on the run length of siloxane or hydrocarbon methylene units within the carbosiloxane/hydrocarbon monomer. These soft phase monomers were then copolymerized with latent chain‐internal crosslinking carbosilane monomers in the presence of latent chain‐end crosslinking molecules thereby generating a new class linear copolymers capable of being moisture cured to produce a new class of silicon‐based thermoset systems. Mechanical properties of these thermosets, show breaking strengths up to 0.5 MPa and elongations up to 100%. Both elastic and plastic behavior can be observed in such systems, depending upon the molar ratio of carbosiloxane/hydrocarbon co‐monomer and the carbosilane co‐monomer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1866–1877, 2010  相似文献   

12.
A benzoxazine compound (FDP‐FBz), which possesses a fluorene group and two terminal furan groups, and its corresponding cross‐linked polymer (CR‐FDP‐FBz) have been prepared using 4,4′‐(9‐fluorenylidene)diphenol (FDP), furfurylamine, and formaldehyde as precursors. The chemical structure of FDP‐FBz has been characterized with Fourier‐transform infrared and 1H nuclear magnetic resonance spectroscopies. FDP‐FBz displays a melting point at about 173 °C and a processing window of 52 °C as well as good solubility in common organic solvents. As a result, FDP‐FBz can be fabricated in both molten and solution processes. Under an excitation at 365 nm, FDP‐FBz exhibits a photoluminescent (PL) emission at about 445 nm. The PL intensity of FDP‐FBz is as high as sixfolds of the intensity recorded with FDP. CR‐FDP‐FBz displays a glass transition temperature of 215 °C, a high storage modulus of 3.1 GPa, a 10% weight loss at 384 °C, and a high char yield of 56 wt % (900 °C, in nitrogen). Moreover, CR‐FDP‐FBz has a high refractive index of about 1.65 as a result of incorporating fluorene groups to its structure. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4020–4026, 2010  相似文献   

13.
Cavitation behavior in poly(4‐methyl‐1‐pentene) upon stretching below glass transition temperature was investigated by in situ ultra‐small angle X‐ray scattering technique. Strong stress‐whitening was observed indicating an extensive occurrence of cavitation in the material during tensile deformation below Tg. The X‐ray scattering patterns suggest oriented disc‐shaped cavities with normal mostly parallel to the stretching direction occurred. Structural parameters of such cavities such as thickness, radius, and tilting angle of the normal of the disc with respect to the stretching direction have been successfully calculated using a model fitting procedure. The results exhibited a two‐step process of cavitation that small amount of large cavities appeared first and then small cavities were triggered extensively in the samples at larger strains. This two‐step cavitation phenomenon can be weakened after the quenched sample was annealed or the sample was prepared by slow cooling. This peculiar two‐step cavitation process can be understood as a result of high frozen in internal stress in quenched sample that led to local failure of the materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2007–2014  相似文献   

14.
We have used the Interfacial Force Microscope to perform temperature dependent indentation measurements on a model viscoelastic material, Silly Putty. By transforming time dependent stress relaxations into frequency dependent modulus, we can identify the temperature dependence of the elastic and viscous response of an experimentally challenging material. This technique promises to be useful in determining the mechanical properties of composite materials with microscopic spatial resolution. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1285–1290, 2009  相似文献   

15.
The study of flow of non‐Newtonian fluids in porous media is very important and serves a wide variety of practical applications in processes such as enhanced oil recovery from underground reservoirs, filtration of polymer solutions and soil remediation through the removal of liquid pollutants. These fluids occur in diverse natural and synthetic forms and can be regarded as the rule rather than the exception. They show very complex strain and time dependent behavior and may have initial yield‐stress. Their common feature is that they do not obey the simple Newtonian relation of proportionality between stress and rate of deformation. Non‐Newtonian fluids are generally classified into three main categories: time‐independent whose strain rate solely depends on the instantaneous stress, time‐dependent whose strain rate is a function of both magnitude and duration of the applied stress and viscoelastic which shows partial elastic recovery on removal of the deforming stress and usually demonstrates both time and strain dependency. In this article, the key aspects of these fluids are reviewed with particular emphasis on single‐phase flow through porous media. The four main approaches for describing the flow in porous media are examined and assessed. These are: continuum models, bundle of tubes models, numerical methods and pore‐scale network modeling. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

16.
We present a method to make continuous multi‐material structures from a monomer solution that becomes a soft hydrogel when exposed to blue light and a hard solid when exposed to UV light. We show that the material can be varied between a hard epoxy material to a several hundred times softer poly(ethylene glycol)‐diacrylate material. Moreover, the elastic properties of the material depend on both the wavelength of and exposure time of the light, which is used to produce a material with an elasticity gradient. We expect our material to find use in a range of fields, with immediate applications as 2D sheets with tunable mechanical properties for cell durotaxis studies, and 3D stereolithographically printed tissue mimicks, for example, for disease models and tissue engineering. Spatially resolved photo‐polymerization of a mixture of epoxy and acrylate monomers can be used to make multi‐material structure, with unique freedom to polymerize each monomer individually. The elastic compressive properties of the material are shown to be fully tunable from <100 kPa to >20 MPa depending on the light exposure time. This is used to make a functionally graded continuous material with a large variation in elastic properties. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1195–1201  相似文献   

17.
The nature of strain hardening in glassy polymers is investigated by studying the mechanical response of oriented polycarbonate in uniaxial extension and compression. The yield stress in extension is observed to increase strongly with predeformation, whereas it slightly decreases in compression (the so-called Bauschinger effect). Moreover, oriented specimens tend to display increased strain hardening in extension, whereas this nearly vanishes in compression. It is shown that these observations can be captured by the introduction of a viscous contribution to strain hardening in terms of a deformation dependence of the flow stress. This can originate either from a deformation-induced change in activation volume, as observed for isotactic polypropylene, or from a deformation-induced change of the rate constant, as observed for polycarbonate, which causes the room temperature yield kinetics of this material to shift from the α into the (α+β) regime. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1483–1491, 2010  相似文献   

18.
The impacts of Rouse spring, Fraenkel spring, and one kind of finitely extensible nonlinear elastic spring (FENE‐PM spring) on the surface tension‐induced retraction of a polymer ellipsoid in a matrix were compared using dissipative particle dynamics. Using the same spring constant, obvious differences among the three kinds of springs were found. A fast retraction process was observed from the hard Fraenkel spring, a slow process from the soft Rouse spring, and an intermediate process from the FENE‐PM spring. The effects of varying the spring constant and the chain length were also investigated. The results indicate that the influence of increasing spring hardness for a given spring type was significant; whereas, the influence of chain length was minor after five bonds were reached. The effects of varying the FENE‐PM rm parameter were also studied to provide a reliable value for this study. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

19.
Submitted to large sinusoidal strains, filled elastomers not only show a decrease in their storage modulus — the Payne effect, but also a nonlinear behavior — their response is not sinusoidal anymore and involves strain‐stiffening. We show in this study that the two effects can be separated thanks to large amplitude oscillatory shear experiments. The stress signal of filled elastomers consisting of a dispersion of silica particles into a polymeric matrix was decomposed into an elastic and a viscous part and we could observe simultaneously the Payne effect and a strain‐stiffening phenomenon. We showed that the strain‐stiffening was correlated with the Payne effect but came from various intricated effects. It most probably also has its origins in the finite extensibility of the polymer chains confined between solid particles, where the strain is larger. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

20.
Column buckling mechanics were examined as a technique to determine the modulus of glassy polymer films that fail at very low strains in tension. As an alternative modulus measurement technique, free‐standing column buckling (FSCB) mechanics were investigated here. Given the film geometries and the critical buckling load, classical relationships can be used to determine the modulus. Several polymeric materials were tested and compared to uniaxial tensile values to determine the robustness and validity of the technique. Film geometries were varied from 4 to 18 mm in width and from 15 to 60 mm in length. The films were compressed in plane until buckling occurred and the critical buckling load was measured for each geometry. The critical buckling load increased as film width increased and decreased as film length increased, while the thickness was held constant for each material. For polyethylene terephthalate films, the elastic modulus was determined to be 3.06 ± 0.58 GPa. This FSCB‐determined modulus was compared to the elastic modulus obtained by tensile testing (3.54 ± 0.2 GPa). The modulus measurement technique presented here has the potential to be used experimentally to determine the elastic modulus of glassy polymer films that perform poorly in tension. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 15–20  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号