首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The absorption and fluorescence characteristics of (4‐dimethylamino‐benzylidene)‐(4,6‐dimethyl‐pyrimidin‐2‐yl)‐amine (SB) have been investigated in different solvents. Both the absorption and emission spectra of SB exhibit red shifts as the solvent polarity increases. This indicats a change in dipole moment of molecules upon excitation as a result of intramolecular charge transfer interaction. The fluorescence quantum yield depends strongly on the properties of the solvents, which was discussed on the bases of positive and negative solvatokinetic effects. The effect of some divalent transition metal ions such as Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+on the absorption and fluorescence spectra of SB is also investigated. The results were consistent with formation of highly colored metal‐ SB complex which is responsible for the extreme quenching of the fluorescence of SB. The variations of both the formation constant of the complex and Stern‐Volmer constant were correlated with the electronic structure of the used metal ion.  相似文献   

2.
设计合成了识别Zn2+的荧光传感分子--2-羟基-1-萘甲醛缩-2-萘甲酰腙(3)。 通过红外光谱、核磁共振谱和质谱测试技术表征了其结构。 利用其光谱性质研究了该物质对几种过渡金属离子的识别性质,初步探讨了其结合模式。 结果表明,在乙腈介质中,受体分子3表现出对Zn2+良好的选择性,Zn2+的加入导致受体分子3的吸收光谱在435 nm处出现1新峰,其吸光度逐渐增强,同时于239、302、330、342和387 nm处观察到5个清晰的等吸收点;在516 nm处荧光增强101倍,而其它过渡金属只引起受体分子]3的荧光略微增强。 Job法实验揭示受体分子3与Zn2+的结合比为1∶1。  相似文献   

3.
A novel organic–inorganic silica‐based fluorescent probe was designed, synthesized and characterized by different techniques such as XRD, BET, TGA, and FT‐IR. The fluorescence properties of the probe were studied in the presence of a variety of metal‐ions in water. The results revealed that various metal‐ions negligibly vary the emission intensity of the probe except for Hg2+, which quenched the intensity dramatically. The selectivity of the probe toward Hg2+ ion was further investigated in the presence of common competing metal‐ions and the results demonstrated the high selectivity of the probe toward Hg2+ ion. The fluorescence emission of the probe was also studied as a function of the concentration of Hg2+ ion. A nanomolar limit of detection was estimated for Hg2+, indicating a high sensitivity. Furthermore, the probe showed INHIBIT‐type logic behavior with Hg2+ and H+ as inputs. Also, the optimum pH range was studied in addition to reversibility and real world applicability of the probe.  相似文献   

4.
A novel diarylethene containing a 3-(4-methylphenyl)-1H-pyrazol-5-amine was synthesized. Its multi-responsive properties induced by UV/Vis lights and metal ions were studied in detail by absorption and fluorescence emission spectroscopy. It showed excellent fluorescence sensing ability for Al3+ and Zn2+ with very low detection limit. In addition, based on the multi-responsive characteristics, a logic circuit was constructed by using both UV/Vis lights and chemical species stimuli as inputs and fluorescence intensity as outputs. Moreover, the diarylethene was successfully applied to effectively detect Al3+ and Zn2+ in actual water samples.  相似文献   

5.
A benzimidazole-based optical probe having pendant carboxyl, amine, and imine groups as ionophore has been prepared for screening various metal ions. The 4-(1H-benzo[d]imidazol-2-yl)-1H-imidazole-5-carboxylic acid (1) has been obtained in good yield and characterized by full battery of complementary physico-chemical techniques including 1H NMR, UV-Vis, fluorescence spectroscopy, and single crystal X-ray crystallography. Metal ion-binding properties of 1 have been studied using ppm level concentration of representative alkali metal (Na+, K+), alkaline earth metal (Mg2+, Ca2+), and transition metal (Zn2+, Co2+, Fe3+, Cd2+, Hg2+, Pb2+, Cu2+, Ag+) ions and the output signal was monitored via two different channels viz chromogenically and fluorogenically. Selective recognition of Hg2+ has been explored with absorption spectra whereas emission spectra of 1 display differential response for multiple cations at parts-per-million (ppm) level concentration that allow selective detection of Ca2+, Mg2+, and Na+ ions. The results have been discussed in light of selectivity, sensitivity, response time, mode of binding/interactions, and sensing properties.  相似文献   

6.
Some novel Y-shaped imidazole derivatives were developed for highly sensitive chemisensors for transition metal ions. A prominent fluorescence enhancement was found in the presence of transition metal ions such as Hg2+, Pb2+ and Cu2+ and it is due to the suppression of radiationless transitions from the n–π* state in the chemisensors. The HOMO–LUMO energies, electric dipole moment (μ) and the first-hyperpolarizability (β) values of the investigated molecule have been studied theoretically which reveal that the synthesized molecules have microscopic non-linear optical (NLO) behaviour with non-zero values.  相似文献   

7.
A new glucose-based C2-derivatized colorimetric chemo-sensor (L1) has been synthesized by a one-step condensation of glucosamine and 2-hydroxy-1-naphthaldehyde for the recognition of transition metal ions. Among the eleven metal ions studied, viz., Mg2+, Ca2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+, L1 results in visual colour change only in the presence of Fe2+, Fe3+and Cu2+ in methanol. However, in an aqueous HEPES buffer (pH 7.2) it is only the Fe3+ that gives a distinct visual colour change even in the presence of other metal ions, up to a concentration of 280 ppb. The changes have been explained based on the complex formed, and the composition has been determined to be 2:1 between L1 and Fe3+ based on Job’s plot as well as ESI MS. The structure of the proposed complex has been derived based on HF/6-31G calculations.  相似文献   

8.
A new macrocyclic chemosensor containing two naphthalene fluorophores has been synthesized. The fluorescent properties of this receptor has been studied in the presence of various metal ions such as Na+, Ag+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+. When increasing concentrations of Zn2+ ions were introduced, the emission of L was drastically increased (EFE = 4.34). This special change was not observed when other metal ions were used; such highly selective fluorescent response indicates that this receptor can easily discriminate Zn2+ ions from other similar species. Model calculations at DFT level further suggest the possible interaction mode, and relatively steric position between the host and guest also influence the optical response.  相似文献   

9.
A series of novel (oligo)thienyl-imidazo-benzocrown ethers were synthesised through a simple method and evaluated as fluorimetric chemosensors for transition metal cations. Interaction with Ni2+, Pd2+, and Hg2+ in ACN/DMSO solution (99:1) was studied by absorption and emission spectroscopy. Chemoselectivity studies in the presence of Na+ were also carried out and a fluorescence enhancement upon chelation (CHEF) effect was observed following Hg2+ complexation. Considering that most systems using fluorescence spectroscopy for detecting Hg2+ are based on the complexation enhancement of the fluorescence quenching (CHEQ) effect, the present work represents one of the few examples for sensing of Hg2+ based on a CHEF effect.  相似文献   

10.
A new benzimidazole‐spiropyran conjugate chemosensor molecule ( BISP ) has been synthesized and characterized by 1H NMR spectroscopy, mass spectrometry (ESI‐MS), and elemental analysis. The two isomeric forms ( BISP ? BIMC ) were shown to be highly selective and sensitive to CN? among the ten anions studied in aqueous HEPES buffer, as shown by fluorescence and absorption spectroscopy and even by visual color changes, with a detection limit of 1.7 μM for BIMC . The reaction of CN? with BIMC was monitored by 1H NMR spectroscopy, high‐resolution mass spectrometry (HRMS), UV/Vis measurements, and fluorescence spectroscopy in HEPES buffer of pH 7.4. TDDFT calculations were performed in order to correlate the electronic properties of the chemosensor with its cyanide complex. Further, titration against thiophilic metal ions like Au3+, Cu2+, Ag+, and Hg2+ with [ BIMC‐CN ] in situ showed that it acts as a secondary recognition ensemble toward Au3+ and Cu2+ by switch‐on fluorescence. In addition, a reversible logic‐gate property of BIMC has been demonstrated through a feedback loop in the presence of CN? and Au3+ ions, respectively. Furthermore, the use of BIMC to detect CN? in live cells by fluorescence imaging has also been demonstrated. Notably, test strips based on BIMC were fabricated, which could serve as convenient and efficient CN? test kits.  相似文献   

11.
A novel calix[4]arene based molecular probe for metal ions has been designed, synthesized and evaluated. Studies on its binding with different metal ions reveal a noticeable naked eye color change, bathochromic shift in absorption spectrum and remarkable enhancement in fluorescence emission in the presence of Cu2+ only. The role of calix[4]arene scaffold for selective recognition of Cu2+ has been demonstrated by repeat evaluation and analysis of an appropriate reference molecule. A rational explanation for fluorescence enhancement in 3 on interaction with copper has been suggested.  相似文献   

12.
Two new indole derivatives have been synthesized by a one-pot procedure and their potential as fluorescence probes for metal ions was investigated. The sensor capability of 1 and 2 toward cations such as Ag+, Cu2+, Zn2+, Cd2+, Pb2+, and Hg2− was studied in dichloromethane solution by absorption, fluorescence emission, and 1H NMR titrations. Both probes showed selectivity for Ag+ and Hg2+ ions. The results suggest that these compounds may serve as promising models for future design of novel and more potent sensors.  相似文献   

13.
The synthesis of two new tritopic crown ligands (L1 and L2) bearing two benzo-15-crown-5 lateral moieties linked through a dibenzo-trioxa chain together with their interaction with metal ions, in acetonitrile and acetonitrile–water (50%, v/v) solutions is reported. The influence of K+, Na+, Li+, Ca2+, Ba2+, Cu2+, Zn2+, Cd2+, Pb2+ and Al3+, on the spectroscopic properties of these diaza-polyoxa ligands was investigated by absorption spectrophotometry and in some cases by fluorescence emission spectroscopy. Coordination with alkaline (Na+, K+ and Li+) and alkaline earth (Ca2+and Ba2+) metal ions is assumed to be weak with both macrobicyclic ligands, while the interaction with both imine and amine derivatives causes a minor effect in the absorption spectra. Coordination with Cu2+, Zn2+ and Pb2+ in acetonitrile solution causes a major change in the absorption spectra of the chromophores. In the case of Cu2+, addition of the metal to L1 or L2 leads to a blue–violet complex in solution with an absorbance maximum centred at 590 nm. Interaction of the Schiff-base L1 with Pb2+ leads to a short wavelength shift in the absorption bands, comparable with the ZnL1 complex. Presence of transition metal ions such as Co2+, Ni2+and Cd2+ do not remarkably affect the absorption spectra of L1 and L2 in solution. Trivalent aluminium has a modest effect in the absorption bands of both N2O13 donor set bismacrocyclic ligands. The fluorescence study of L2 in the presence of Na+, K+, Ca2+, Ba2+, Co2+, Cu2+, Ni2+, Pb2+ and Al3+shows that Cu2+, Pb2+ and Al3+ complexes form non-fluorescent complexes.  相似文献   

14.
Bishnu Prasad Joshi 《Talanta》2009,78(3):903-1129
A novel fluorescent peptide sensor containing tryptophan (donor) and dansyl fluorophore (acceptor) was synthesized for monitoring heavy and transition metal (HTM) ions on the basis of metal ion binding motif (Cys-X-X-X-Cys). The peptide probe successfully exhibited a turn on and ratiometric response for several heavy metal ions such as Hg2+, Cd2+, Pb2+, Zn2+, and Ag+ in aqueous solution. The enhancements of emission intensity were achieved in the presence of the HTM ions by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The detection limits of the sensor for Cd2+, Pb2+, Zn2+, and Ag+ were lower than the EPA's drinking water maximum contaminant levels (MCL). We described the fluorescent enhancement, binding affinity, and detection limit of the peptide probe for HTM ions.  相似文献   

15.
Hui Xu  Xiwen Zeng  Huiling Dai 《中国化学》2011,29(10):2165-2168
A new fluorescent chemosensor based upon 1,8‐naphthalimide and 8‐hydroxyquinoline was synthesized, and its fluorescent properties in the presence of different metal cations (Hg2+, Ag+, Zn2+, Fe2+, Cd2+, Pb2+, Ca2+, Cu2+, Mg2+, and Ba2+) were investigated. It displayed fluorescence quenching with some heavy and transition metal (HTM) ions, and the quenching strongly depended on the nature of HTM ions.  相似文献   

16.
A new multi‐component chemosensor system comprising a naphthalimide moiety as fluorophore is designed and developed to investigate receptor–analyte binding interactions in the presence of metal and non‐metal ions. A dimethylamino moiety is utilized as receptor for metal ions and a thiourea receptor, having acidic protons, for binding anions. The system is characterized by conventional analytical methods. The absorption and fluorescence spectra of the system consist of a broad band typical for an intramolecular charge transfer (ICT). The effects of various metal‐ion additives on the spectral behavior of the present sensor system are examined in acetonitrile. It is found that among the metal ions studied, alkali/alkaline earth‐metal ions and transition‐metal ions modulate the absorption and fluorescence spectra of the system. As an additional feature, the anion signaling behavior of the system in acetonitrile is studied. A decrease in fluorescence efficiency of the system is observed upon addition of fluoride and acetate anions. Fluorescence quenching is most effective in the case of fluoride ions. This is attributed to the enhancement of the photoinduced electron transfer from the anion receptor to the fluorophore moiety. Hydrogen‐bond interactions between the acidic NH protons of the thiourea moiety and the F? anions are primarily attributed to the fluoride‐selective signaling behavior. Interestingly, a negative cooperativity for the binding event is observed when the interactions of the system are studied in the presence of both Zn2+ and F? ions. NMR spectroscopy and theoretical calculations are also carried out to better understand the receptor–analyte binding.  相似文献   

17.
A novel fluoroionophore compound was synthesized from a boron dipyrromethene (BODIPY) fluorophore and 4′-formylbenzo-15-crown-5 ionophore groups. Photophysical properties of the BODIPY-crown compound were studied with UV–Vis and fluorescence spectroscopy. The effect of metalic cations (Li+, Na+, K+, Mg2+, Ca2+, Ba2+, Al3+, Fe3+, Cu2+, Co2+, Zn2+, Ag+, Hg2+, Pb2+) on the absorption and fluorescence spectra of compound 2 was investigated. Blue shifts were detected in UV–Vis spectra upon addition of some metal ions (Al3+ > Fe3+ > Na+). At the same time, the emission intensity of this complex increased due to binding of Na+ ion to the benzo crown cavity. Additionally, a decrease in the intensity of the 630 nm emission peak and an increase in the intensity of the 570 nm emission peak was observed in the fluorescence emission spectra following addition of Al3+ and Fe3+ ions.  相似文献   

18.
In recent years, interactions of metal ions with amino acid derivatives have been studied extensively due to their immense importance in the life-supporting processes. Here, we report the synthesis of three metal (Ni2+, Cu2+, and Zn2+) complexes of N-acetyl-l-cysteine (NAC) using a solvent-free solid-state method. Characterization of the complexes by elemental analyses, molar conductance, SEM, infrared and electronic absorption spectra reveals that the metal ions bind to the NAC molecules in 1:2 molar ratio (metal:ligand) via the S-atoms. Theoretical calculations are carried out using the B3LYP hybrid functional in combination with 6-31++G(d,p) and LANL2DZ basis sets to investigate the effects of metal coordination on the backbone structural features of NAC and geometry about the α-carbon atom. The molecular geometries of NAC as well as its metal complexes are fully optimized in gas phase without applying any geometrical constraint, and a second derivative analysis confirms that all the optimized geometries are true minima. TD-DFT single-point calculations are performed in aqueous phase to obtain the theoretical λ max values. The gas-phase interaction enthalpies (metal ion binding affinities), Gibbs energies, HOMO/LUMO energies as well as their energy gaps, rotational constants, dipole moments, and theoretically predicted vibrational spectra of all the reaction species are also calculated and thoroughly analyzed. Most of the experimental results are well reproduced by the B3LYP level of calculations. Metal ion coordination to NAC modifies its backbone structural features as well as the geometry about the α-carbon atom.  相似文献   

19.
IntroductionThehighsensitivityandselectivityofmolecularfluores cenceorluminescencehavebeenwidelyutilizedinmonitoringH+ ,Ca2 + ,Na+ ,Mg2 + ,andotherimportantcationoran ionionsinbiologicalorenvironmentalsystems.Duetothesensitiveresponseofluminescenceuponmicroenviromentalchanges (e .g .polarityofsolvent,pH ,thepresenceofions) ,bipyridinecomplexesofRe(I)andRu(II)withmetaltoligandchargetransferexcitedstatesconstitutealargefami lyofchemicalsensors.1 5Intheseprobingmolecules ,theco operationofthe…  相似文献   

20.
The dimethyl phenyl phosphine (DMPP) initiated polymerization of methyl methacrylate (MMA) in dimethylsulfoxide was studied. Polymerization of MMA in this system required the presence of transition metal ions like Fe3+ or Cu2+. Kinetic studies showed that the propagation was free radical in nature. An interaction between DMPP and MMA was detected spectrophotometrically. A proposed mechanism involves a transition metal ion-activated dipole interaction between the carbonyl oxygen and the phosphorus atom with the ultimate formation of a methyl methacrylate type of free radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号