首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We carried out experiments to evaluate seasonal changes in the impacts of UV radiation (UVR, 280–400 nm) on photosynthetic carbon fixation of phytoplankton assemblages. Surface water samples were obtained in the coastal area of the South China Sea, where chlorophyll a ranged 0.72–3.82 μg L−1. Assimilation numbers (photosynthetic carbon fixation rate per chl a) were significantly higher during summer 2005 than those in spring and winter 2004. The mean values obtained under photosynthetically active radiation (PAR) were 2.83 (spring 2004), 4.35 (winter 2004) and 7.29 μg C (μg chl a)−1 h−1 (summer 2005), respectively. The assimilation numbers under PAR + UVR were 1.58, 2.71 and 5.28 μg C (μg chl a)−1 h−1, for spring, winter and summer, respectively. UVR induced less inhibition of photosynthesis during summer 2005 than during the other seasons, in spite of the higher UVR during summer. The seasonal differences in the productivity and photosynthetic response to UV were mainly due to changes in water temperature, while irradiance and vertical mixing explained >80% of the observed variability. Our data suggest that previous studies in the SCS using UV-opaque vessels might have overestimated the phytoplankton production by about 80% in spring, 61% in winter and 38% in summer.  相似文献   

2.
This study demonstrates that UV radiation (UVR) reduces the photoprotective capacity of the diatom Phaeodactylum tricornutum by affecting xanthophyll cycle (XC) activity. The short‐term reduction of photosystem II (PSII) maximum efficiency of charge separation (Fv/Fm) in cells exposed to UVR could be explained mainly by a reduced photoprotective capacity under this condition. Phaeodactylum tricornutum cells acclimated to two different photosynthetically active radiation (PAR) intensities, high light (HL, 200 μmol quanta m?2 s?1) and low light (LL, 50 μmol quanta m?2 s?1), were exposed to saturating irradiance (1100 μmol quanta m?2 s?1) in the presence (PAR + UVR) and absence of UVR (PAR). HL cells exhibited a greater reduction in Fv/Fm in PAR + UVR when compared with the PAR treatment that was related to a reduction in the de‐epoxidation of XC pigments. In contrast, in LL cells, UVR did not considerably affect XC de‐epoxidation even though the reduction in Fv/Fm was greater than in HL cells. The negative effect of UVR on photoprotection was more pronounced in HL cells because they synthesized more XC pigments than LL cells. This was confirmed when XC activity was blocked with dithiothreitol and when PSII repair was inhibited with chloramphenicol (CAP). The differential reduction of Fv/Fm between PAR + UVR and PAR treatments disappeared when XC was blocked in HL cells. A higher reduction and an incomplete recovery of Fv/Fm were observed in cells incubated with CAP in the presence of UVR. Such responses confirm that UVR had a negative effect on photoprotective mechanisms causing an enhancement of damage by PAR, especially in HL‐acclimated cells in which heat dissipation is important for PSII regulation.  相似文献   

3.
Emiliania huxleyi, the most abundant coccolithophorid in the oceans, is naturally exposed to solar UV radiation (UVR, 280–400 nm) in addition to photosynthetically active radiation (PAR). We investigated the physiological responses of E. huxleyi to the present day and elevated CO2 (390 vs 1000 μatm; with pHNBS 8.20 vs 7.86) under indoor constant PAR and fluctuating solar radiation with or without UVR. Enrichment of CO2 stimulated the production rate of particulate organic carbon (POC) under constant PAR, but led to unchanged POC production under incident fluctuating solar radiation. The production rates of particulate inorganic carbon (PIC) as well as PIC/POC ratios were reduced under the elevated CO2, ocean acidification (OA) condition, regardless of PAR levels, and the presence of UVR. However, moderate levels of UVR increased PIC production rates and PIC/POC ratios. OA treatment interacted with UVR to influence the alga's physiological performance, leading to reduced specific growth rate in the presence of UVA (315–400 nm) and decreased quantum yield, along with enhanced nonphotochemical quenching, with addition of UVB (280–315 nm). The results clearly indicate that UV radiation needs to be invoked as a key stressor when considering the impacts of ocean acidification on E. huxleyi.  相似文献   

4.
Atmospheric and in‐water solar radiation, including UVR‐B, UVR‐A and PAR, as well as chromophoric dissolved organic matter absorption [aCDOM(λ)] in surface waters were monthly measured from November 2007 to December 2008 at a coastal station in the Northwestern Mediterranean Sea (Bay of Marseilles, France). Our results showed that the UVR‐B/UVR–A ratio followed the same trend in the atmosphere and at 2 m depth in the water (P < 0.0001) with an increase (eight‐fold higher) during summer. The low diffuse attenuation coefficients for downward irradiance [Kd(λ)] of UVR‐B, UVR‐A and PAR indicated that the waters were highly transparent throughout the year. The relationships between aCDOM(λ) and Kd(λ) in this oligotrophic system suggested that CDOM contributed to UVR attenuation in the UVA domain, but also played a significant role in PAR attenuation. Mean UV doses received in the mixed layer depth were higher by a factor 1.4–33 relative to doses received at fixed depths (5 and 10 m) in summer (stratified period), while the inverse pattern was found in winter (mixing period). This shows the importance of taking into account the vertical mixing in the evaluation of UVR effects on marine organisms.  相似文献   

5.
Accurate determination of the diurnal variability and daily insolation of surface (0+) and subsurface (0?) irradiance are essential to estimate several physical, chemical and biological processes occurring at the surface layer of marine environments. Natural downwelling PAR and spectral UVR were examined on eight occasions at 0+ and 0? to refine empirical models, particularly in the UVR spectrum. The diurnal variability in UVR and PAR were wavelength dependent and were modeled by a sinusoidal equation. The best fit for PAR at 0+ and 0? was the sinusoid power of = 2 and = 2.5, respectively. In the UVR spectrum, sinusoids increased as wavelengths decreased ranging from = 2–5. Higher n values in the UV‐B spectrum suggest sharper increase/decrease near sunrise and sunset hours, ultimately reducing the final value of daily insolation at specified wavelengths. Calculated daily insolation of UV‐B/(UV‐A + PAR) ratio suggests that photoinhibition from exposure to UV‐B occurs within a shorter biologically effective day length than PAR, and is high during summer and low during winter. These results suggest that biogeochemical calculations based on diurnal models of irradiance measurements would benefit from accurate solar noon references and wavelength specificity, particularly in the UVR spectrum.  相似文献   

6.
Solar UV radiation (280-400 nm) may affect morphology of cyanobacteria, however, little has been evidenced on this aspect while their physiological responses were examined. We investigated the impacts of solar PAR and UVR on the growth, photosynthetic performance and morphology of the cyanobacterium Anabaena sp. PCC7120 while it was grown under three different solar radiation treatments: exposures to (a) constant low PAR (photosynthetic active radiation, 400-700 nm), (b) natural levels of solar radiation with and (c) without UV radiation (290-400 nm). When the cells were exposed to solar PAR or PAR+UVR, the photochemical efficiency was reduced by about 40% and 90%, respectively, on day one and recovered faster under the treatment without UVR over the following days. Solar UVR inhibited the growth up to 40%, reduced trichome length by up to 49% and depressed the differentiation of heterocysts. Negligible concentrations of UV-absorbing compounds were found even in the presence of UVR. During the first 2 d of exposure to natural levels of PAR, carotenoid concentrations increased but no prolonged increase was evident. Heterocyst formation was enhanced under elevated PAR levels that stimulated quantum yield and growth after an initial inhibition. Higher concentrations of carotenoids and a twofold increase in the carotenoid to chlorophyll a ratio provided protection from the high levels of solar PAR. Under radiation treatments with UVR the relatively greater decrease in chlorophyll a concentrations compared with the increase in carotenoids was responsible for the higher carotenoid: chlorophyll a ratio. Heterocyst formation was disrupted in the presence of solar UVR. However, the longer term impact of heterocyst disruption to the survival of Anabaena sp. requires further study.  相似文献   

7.
The effect of ultraviolet (UV) radiation and copper (Cu) on apical segments of Pterocladiella capillacea was examined under two different conditions of radiation, PAR (control) and PAR+UVA+UVB (PAR+UVAB), and three copper concentrations, ranging from 0 (control) to 0.62, 1.25 and 2.50 μm . Algae were exposed in vitro to photosynthetically active radiation (PAR) at 70 μmol photons m?2 s?1, PAR + UVB at 0.35 W m?2 and PAR +UVA at 0.70 W m?2 during a 12‐h photocycle for 3 h each day for 7 days. The effects of radiation and copper on growth rates, content of photosynthetic pigments and photosynthetic performance were analyzed. In addition, samples were processed for light and transmission electron microscopy. The content of photosynthetic pigments decreased after exposure to radiation and Cu. Compared with PAR radiation and copper treatments modified the kinetics patterns of the photosynthesis/irradiance curve. The treatments also caused changes in the ultrastructure of cortical and subcortical cells, including increased cell wall thickness and accumulation of plastoglobuli, as well as changes in the organization of chloroplasts. The results indicate that the synergistic interaction between UV radiation and Cu in P. capillacea, led to the failure of protective mechanisms and causing more drastic changes and cellular imbalances.  相似文献   

8.
We investigated the effects of salinity and artificial UV radiation on the accumulation of mycosporine‐like amino acids (MAAs) in sexual and parthenogenetic Artemia from Lake Urmia. The nauplii hatched from the cysts were cultured until adulthood under two salinities (150 and 250 g L?1) and two light treatments (PAR and PAR+UVR) in the laboratory. Finally, the Artemia were analyzed for their concentration of MAAs. In most of the cases, the higher salinity level applied was found to increase the MAA concentrations in both Artemia populations significantly. The acquisition efficiency of MAAs in both Artemia populations increased under exposure to UVR‐supplemented photosynthetically active radiation (PAR) compared to those raised under PAR, except for Porphyra‐334. It was observed that combination of UV radiation and elevated salinity significantly increased the bioaccumulation of MAAs. Thus, the presence of these compounds in these populations of Artemia may increase their adaptability for living in high‐UV and high‐salinity conditions prevailing in Lake Urmia. Higher concentrations of MAAs in the parthenogenetic population of Artemia could be probably attributed to its mono sex nature and higher adaptation capacities to extreme environmental conditions.  相似文献   

9.
The photoacclimation responses of the brown macroalga Sargassum cymosum were studied to determine its cytochemical and ultrastructural organization, as well as photosynthetic pigments and performance. S. cymosum was cultivated in three salinities (30, 35 and 40 psu) under four irradiation treatments: PAR‐only, PAR + UVA, PAR + UVB and PAR + UVA + UVB. Plants were exposed to PAR at 70 μmol photons m?2 s?1, PAR + UVB at 0.35 W m?2 and PAR +UVA at 0.70 W m?2 for 3 h per day during 7 days in vitro. Growth rate was not significantly affected by any type of radiation or salinity. The amount of pigments in S. cymosum was significantly influenced by the interaction of salinity and radiation treatments. Compared with PAR‐only, UVR treatments modified the kinetics patterns of the photosynthesis/irradiance curve. After exposure to UVR, S. cymosum increased cell wall thickness and the presence of phenolic compounds. The number of mitochondria increased, whereas the number of chloroplasts showed few changes. Although S. cymosum showed insensitivity to changes in salinity, it can be concluded that samples treated under four irradiation regimes showed structural changes, which were more evident, but not severe, under PAR + UVB treatment.  相似文献   

10.
The effect of different ultraviolet radiation (UVR) treatments combining PAR (P), UVA (A) and UVB (B) on the molecular physiology of Dunaliella tertiolecta was studied during 6 days to assess the response to chronic UVR exposure. UVR reduced cell growth but did not cause cell death, as shown by the absence of SYTOX Green labeling and cellular morphology. However, caspase‐like enzymatic activities (CLs), (regarded as cell death proteases), were active even though the cells were not dying. Maximal quantum yield of fluorescence (Fv/Fm) and photosynthetic electron transport rate (ETR) dropped. Decreased nonphotochemical quenching (NPQ) paralleled a drop in xanthophyll cycle de‐epoxidation under UVB. Reactive oxygen species (ROS) and D1 protein accumulation were inversely correlated. PAB exhibited elevated ROS production at earlier times. Once ROS decayed, D1 protein recovered two‐fold compared with P and PA at later stages. Therefore, PsbA gene was still transcribed, suggesting ROS involvement in D1 recovery by its direct effect on mRNA‐translation. We add evidence of an UVB‐induced positive effect on the cells when P is present, providing photoprotection and resilience, by means of D1 repair. This allowed cells to survive. The photoprotective mechanisms described here (which are counterintuitive in principle) conform to an important ecophysiological response regarding light stress acclimation.  相似文献   

11.
We analyzed the effects of UV radiation (UVR) effects on acetylcholinesterase (AChE) activity in two calanoid copepods, Boeckella gibbosa and Parabroteas sarsi that inhabit Patagonian shallow lakes. We studied the effect of experimental UVR (UV-B and UV-A) exposure on AChE activity in relation to basal antioxidant capacities of both copepods. Our experiments showed that UVR can effectively depress AChE activity, although with differences between species. In both copepods AChE was affected by UV-B, whereas UV-A only affected AChE in B. gibbosa. Both copepods also differed in body elemental composition (C:N:P), photoprotecting compound content (carotenoids and mycosporine-like amino acids) and enzymatic antioxidant capacity (glutathione S-transferase [GST]). Our results suggest that when exposed to UVR, AChE activity would depend more on the antioxidant capacity (GST) and P availability for enzyme synthesis than on the photoprotective compounds.  相似文献   

12.
Ultraviolet radiation (UVR, 280–400 nm) is one of the potential factors involved in the induction of coral bleaching, loss of the endosymbiotic dinoflagellate Symbiodinium or their photosynthetic pigments. However, little has been documented on its effects on the behavior and recruitment of coral larvae, which sustains coral reef ecosystems. Here, we analyzed physiological changes in larvae of the scleractinian coral Pocillopora damicornis and examined the photophysiological performance of the symbiont algae, following exposure to incident levels of UVR and subsequently observed the development of coral larvae. The endosymbiotic algae exhibited a high sensitivity to UV‐B (295–320 nm) during a 6 h exposure, showing lowered photosynthetic performance per larva and per algal cell, whereas the presence of UV‐A (320–395 nm) significantly stimulated photosynthesis. UVR decreased chlorophyll a concentration only at higher surface temperature or at the higher doses or intensities of UVR. Correlations between UV‐absorbing compound (UVAC) contents or UVR sensitivity and temperature were identified, implying that UVACs might act as a screen or antioxidants in Pocillopora damicornis larvae. Larvae reared under UVR exposures showed lower levels of survivorship, metamorphosis and settlement, with inhibition by UV‐A being much greater than that caused by UV‐B.  相似文献   

13.
Photosynthetically active radiation (PAR) and Ultraviolet B (UV‐B) radiation are among the main environmental factors acting on herbal yield and biosynthesis of bioactive compounds in medicinal plants. The objective of this study was to evaluate the influence of biologically effective UV‐B light (280–315 nm) and PAR (400–700 nm) on herbal yield, content and composition, as well as antioxidant capacity of essential oils and polyphenols of lemon catmint (Nepeta cataria L. f. citriodora), lemon balm (Melissa officinalis L.) and sage (Salvia officinalis L.) under controlled greenhouse cultivation. Intensive UV‐B radiation (2.5 kJ m?2 d?1) influenced positively the herbal yield. The essential oil content and composition of studied herbs were mainly affected by PAR and UV‐B radiation. In general, additional low‐dose UV‐B radiation (1 kJ m?2d?1) was most effective for biosynthesis of polyphenols in herbs. Analysis of major polyphenolic compounds provided differences in sensitivity of main polyphenols to PAR and UV‐B radiation. Essential oils and polyphenol‐rich extracts of radiated herbs showed essential differences in antioxidant capacity by the ABTS system. Information from this study can be useful for herbal biomass and secondary metabolite production with superior quality under controlled environment conditions.  相似文献   

14.
The study identifies the relative contribution of various bio-optical factors to the total attenuation of ultraviolet radiation (UVR) wavelengths and photosynthetically active radiation (PAR) in temperate coastal waters of Japan by surveying the physical properties of the water column, UVR and PAR penetration, and the absorption characteristics of dissolved and particulate material. Spectral absorbance properties of pigment (aph), detritus (ad) and chromophoric dissolved organic material (aCDOM) displayed both seasonal and wavelength specific variability. On an annual basis, absorbance by aCDOM was the highest absorbing fraction (47-59%) for the UVR wavelengths measured (305, 320, 340 and 380 nm) but decreased (32%) at 450 nm. Contribution of pigments to total absorbance was highest (40-60%) during a spring bloom for both UVR and PAR. A large variability (C.V. > 42%) for annual average attenuation coefficients (Kd[lambda]) at respective wavelengths observed suggests that the spectral composition of the water column changes throughout the year in this region. A significant relationship was observed between Kd(lambda) and aCDOM at 305, 320, 340 and 380 nm only (P < 0.01) but not for 450 nm (PAR) indicating the role of CDOM in regulating variations in Kd(lambda), particularly in the UVR range. The slope S, obtained from a natural-log plot of the absorption coefficient of CDOM against wavelength, ranged between 0.014 and 0.036 nm-1 annually (average = 0.020 +/- 0.007, C.V. = 35%) and suggests seasonal changes in the origin of CDOM between terrestrial (low S) and biogenous (high S) CDOM.  相似文献   

15.
Carpospores of Pyropia acanthophora var. brasiliensis are dispersion and reproduction units responsible for giving rise to the diploid filamentous structure of this alga's life cycle. The present study assesses the anthropogenic impact of ultraviolet radiation (UVR) on morphology and ultrastructure, spore viability, autofluorescence of chloroplasts and the amount of intensity of ROS during the germination of carpospores. Carpospores were cultivated at 24 ± 1°C, 40 ± 10 μmol photons m?2 s?1 with photoperiod of 12 h and exposed to UVAR + UVBR for 3 h a day for 2 days with a daily dose of 5.05 J cm?2 for UVAR and 0.095 J cm?2 for UVBR. Samples were cultured for another five days exposed only to PAR in order to confirm their viability after the initial 2‐day exposure. Carpospores showed significant sensitivity to UVR exposure after only 48 h, including changes in developmental rate, overall morphology, cell organization and chloroplast autofluorescence. UVR exposure inhibited germ tube formation in carpospores, which were mostly nonviable and/or altered, showing retracted cytoplasm and disorganized cytoplasmic content. Even in the absence of UVR exposure, carpospores remained collapsed, indicating irreversible damage. It can be concluded that UVR is a limiting factor for the development of P. acanthophora.  相似文献   

16.
A highly sensitive, specific and rapid LC‐ESI‐MS/MS method has been developed and validated for the quantification of paricalcitol (PAR) in human plasma (500 μL) using paricalcitol‐d6 (PAR‐d6) as an internal standard (IS) as per regulatory guidelines. A liquid–liquid extraction method was used to extract the analyte and IS from human plasma. Chromatography was achieved on Zorbax SB C18 column using an isocratic mobile phase in a gradient flow. The total chromatographic run time was 6.0 min and the elution of PAR and PAR‐d6 occurred at ~2.6 min. A linear response function was established for the range of concentrations 10–500 pg/mL in human plasma. The intra‐ and inter‐day accuracy and precision values for PAR met the acceptance criteria. The validated assay was applied to quantitate PAR concentrations in human plasma following oral administration of 4 µg capsules to humans. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The role of solar UV radiation in the ecology of alpine lakes.   总被引:10,自引:0,他引:10  
Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.  相似文献   

18.
Erythema (i.e. visible redness) and DNA damage caused by ultraviolet radiation (UVR) in human skin have similar action spectra and show good correlation after a single exposure to UVR. We explored the potential to use instrumental assessments of erythema as a surrogate for DNA damage after repeated exposures to UVR. We exposed 40 human subjects to three different exposure schedules using two different UVR sources. Cyclobutane‐pyrimidine dimers (CPDs) in skin biopsies were measured by immunofluorescence, and erythema was assessed by both the Erythemal Index (EI) and the Oxy‐hemoglobin (Oxy‐Hb) content. Surprisingly, the skin with the highest cumulative dose ended up with the lowest level of DNA damage, and with the least erythema, as assessed by Oxy‐Hb (but not EI) 24 h after the last UV exposure. Although the level of CPDs, on average, paralleled Oxy‐Hb (R2 = 0.80–0.94, P = 0.03–0.11), the correlation did not hold for the pooled individual measurements (R2 = 0.009, P = 0.37) due to potential individual differences in UV‐induced photoadaptation. We suggest that the methodology may be optimized to improve the correlation between DNA damage level and erythema to enable noninvasive risk assessment based on erythema/Oxy‐Hb content for individual human subjects.  相似文献   

19.
A simple LC–MS/MS method facilitated by salting‐out assisted liquid–liquid extraction (SALLE) was applied to simultaneously investigate the pharmacokinetics of trans‐ resveratrol (Res) and its major glucuronide and sulfate conjugates in rat plasma. Acetonitrile–methanol (80:20, v /v) and ammonium acetate (10 mol L−1) were used as extractant and salting‐out reagent to locate the target analytes in the supernatant after the aqueous and organic phase stratification, then the analytes were determined via gradient elution by LC–MS/MS in negative mode in a single run. The analytical method was validated with good selectivity, acceptable accuracy (>85%) and low variation of precision (<15%). SALLE showed better extraction efficiency of target glucuronide and sulfate conjugates (>80%). The method was successfully applied to determine Res and its four conjugated metabolites in rat after Res administration (intragastric, 50 mg kg−1; intravenous, 10 mg kg−1). The systemic exposures to Res conjugates were much higher than those to Res (AUC0–t , i.v., 7.43 μm h; p.o., 8.31 μm h); Res‐3‐O‐β ‐d ‐glucuronide was the major metabolite (AUC0–t , i.v., 66.1 μm h; p.o., 333.4 μm h). The bioavailability of Res was estimated to be ~22.4%. The reproducible SALLE method simplified the sample preparation, drastically improved the accuracy of the concomitant assay and gave full consideration of extraction recovery to each target analyte in bio‐samples.  相似文献   

20.
Ultraviolet-B (UVB;280–320 nm) radiation is a small but biologically significant portion of the solar spectrum reaching the earth's surface. Research interests have been fostered because UVB has been increasing in recent years due to depletion of stratospheric ozone. Ultraviolet-B that penetrates into plant tissue may damage important cellular macromolecules. Although there has been considerable research on the effects of UVB on plants, the influence of the level of photosynthetically active radiation (PAR;400–700 nm) on effects of UVB requires further definition as a prelude to studies of UVB sensitivity and defense mechanisms. Arabidopsis thaliana wildtype ecotype Landsberg erecta (LER), which is relatively insensitive to UVB, and the relatively sensitive LER-based mutant transparent testa-5 (tt5), were grown under 100 or 250 μmol m?2 s?1 PAR and then exposed to O or 7 kJ m?2 day ?1 UVBBE under these PAR levels. Plants exposed to UVB had reduced dry weight and leaf area and higher levels of UV-absorbing compounds in leaf tissue. The level of PAR did influence the effects of UVB, with the higher level of PAR prior to UVB exposure reducing sensitivity of LER to UVB. In contrast to other studies, higher PAR supplied simultaneously with UVB increased rather than decreased sensitivity of both genotypes to UVB. These results demonstrate the importance of controlling and comparing PAR levels when undertaking studies of UVB sensitivity, as effects of UVB on plants are influenced by the PAR levels plants are growing under prior to and during exposure to UVB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号