首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various PVDF/PMMA (poly(vinylidene fluoride)/poly(methyl methacrylate)) blends were selected for mechanical testing in compression. At low PVDF content (less than 50/50 w/w), the blends remain amorphous and PVDF and PMMA are fully miscible. In PVDF-richer blends, PVDF crystallizes in part, leading to a PMMA-enriched homogeneous amorphous phase. In this study, the degree of crystallinity was set at equilibrium by appropriate annealing of the samples before testing. Mechanical analysis was focused on the low deformation range, and especially on the yield region. Depending on the test temperature and blend composition, three types of response were identified, depending on whether plastic deformation is influenced: 1) by the PMMA secondary relaxation motions, 2) by the PVDF/PMMA glass transition motions, or 3) by the crystallite-constrained PVDF chains.  相似文献   

2.
Dielectric and thermal characterizations were performed for poly (vinylidene fluoride) (PVDF)/poly (ethyl methacrylate) (PEMA) blends of different composition. The characteristics of PVDF β relaxation were shown to be little affected in the semicrystalline blends with PEMA. The relaxation strength, however, depends strongly on the PEMA content and a linear relation was found between the intensity of the β relaxation and the weight fraction of the PVDF crystal-amorphous interphase. Phase structures of the PVDF/PEMA blends are also proposed. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Upon crystalline solidification of one component in a homogeneously molten polymer blend, composition profiles develop outside (i.e., in the rest melt) and behind (i.e., within the spherulites) the crystal growth front. The present article is devoted to the detailed verification and the interpretation of these distributions and their temporal development inside growing spherulites. To this end, the energy dispersive X‐ray emission (EDX) of suitable elements has been recorded locally resolved in a scanning electron microscope and evaluated correspondingly. The investigations were performed at the melt homogeneous blend of poly(vinylidene fluoride) (PVDF) as crystallizing and poly(methyl methacrylate) (PMMA) as steadily amorphous component. If the spherulites are not volume filling, the mean PMMA content 〈?PMMA〉 inside the PVDF spherulites is for all blends about 0.2 below the starting composition. ?PMMA increases however slightly from the center of a spherulite to its border. That increase reflects the PMMA concentration in front of the spherulite surface, which increases likewise with time, and is clearly above the initial composition. There is at the spherulite surface, consequently, a remarkable jump in composition from the spherulite internal to its amorphous surroundings. It may amount up to 0.5. With volume filling spherulites, a slight variation of the composition from the center of a spherulite to its border is observed, too. This proves that also at these conditions composition profiles develop in the spherulite's surroundings. They remain however so weak that they do not inhibit crystallization even in its later stages. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 338–346, 2006  相似文献   

4.
The blend system containing a poly(vinylidene fluoride/trifluoroethylene) [P(VDF/TrFE)] copolymer (68/32 mol %) and poly(vinyl acetate) (PVAc) was miscible from the results of differential scanning calorimetry (DSC) studies that exhibit the presence of a single, composition‐dependent glass transition temperature (Tg) and a strong melting point depression for the semicrystalline P(VDF/TrFE) component. However, differences between the DSC and dielectric measurements, which showed a separate P(VDF/TrFE) Tg peak, suggests that the P(VDF/TrFE)/PVAc blends are actually partially miscible. Because of the lower dielectric constant of PVAc and the reduced sample crystallinity caused by the addition of PVAc, both the dielectric constant and the remanent polarization of the copolymer blends decrease with increasing PVAc content. The presence of a small amount of PVAc stabilized the anomalous ferroelectric behavior of ice–water‐quenched P(VDF/TrFE), and the blend portrayed normal polarization reversal behavior after adding only 1 wt % PVAc. The piezoelectric response suggests small changes with an increasing number of poling cycles. It is believed that PVAc affects the DE hysteresis behavior at the interface between crystalline and amorphous phases, although much work remains to be done to confirm this hypothesis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 927–935, 2003  相似文献   

5.
Poly(vinylidene fluoride) (PVDF) blend microporous membranes were prepared by PVDF/poly(methyl methacrylate) blend (with mass ratio = 70/30) via thermally induced phase separation. Benzophenone (BP) and methyl salicylate (MS) were used as diluents. The phase diagram calculations were carried out in terms of a pseudobinary system, considering the PVDF blend to be one component. The crytallization behaviors of PVDF in the dilutions were detected by differential scanning calorimetry measurement. In these two systems, the melting and crystallization temperatures leveled off in the low polymer concentration (<40 wt %), but shifted to a higher temperature when the polymer concentration >40 wt %. The calculated crystallinity of PVDF for samples with low polymer concentrations was greater than those with high polymer concentrations, because of the limited mobility of polymer chains at a high polymer concentration. The membrane structure as determined by scanning electron microscopy depended on the phase separation mechanism. The quenched samples mainly illustrated the occurrence of crystallization on the same time scale as the liquid–liquid phase separated, resulting in the obvious spherulitic structure with small pores in the spherulites. As the polymer concentration increased, the size of the spherulites and pores within the spherulite was decreased. The evaluated porosity for BP diluted system was higher than that for MS diluted system, and decreased with the increased polymer concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 248–260, 2009  相似文献   

6.
Thermal oxidation of poly(ethylene oxide) (PEO) and its blends with poly(methyl methacrylate) (PMMA) were studied using oxygen uptake measurements. The rates of oxidation and maximum oxygen uptake contents were reduced as the content of PMMA was increased in the blends. The results were indicative of a stabilizing effect by PMMA on the oxidation of PEO. The oxidation reaction at 140°C was stopped at various stages and PMMA was separated from PEO and its molecular weights were measured by gel permeation chromatography (GPC). The decrease in the number-average molecular weight of PMMA was larger as the content of PEO increased in the blends. The visual appearance of the films suggested that phase separation did not occur after thermal oxidation. The activation energy for the rates of oxidation in the blends was slightly increased compared to pure PEO. © 1992 John Wiley & Sons, Inc.  相似文献   

7.
Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 85–93, 1998  相似文献   

8.
This article presents the fracture behavior and applicability of the fictitious crack (FC) model to describe the fracture of a porous poly(methyl methacrylate) material. Two test geometries, wedge‐opening load and single‐edge‐notched beam, were employed under two different test conditions (room temperature and in water at 45 °C); all presented quasibrittle fracture behavior. The crack profile of a wedge‐opening load sample was visualized and measured with the digital image correlation technique. The mechanical response of all the samples, including the crack profile, was successfully modeled with the FC model, and this showed the good applicability of this model to the fracture of this granular poly(methyl methacrylate) material. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1112–1122, 2003  相似文献   

9.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   

10.
The liquid–liquid phase‐separation (LLPS) behavior of poly(n‐methyl methacrylimide)/poly(vinylidene fluoride) (PMMI/PVDF) blend was studied by using small‐angle laser light scattering (SALLS) and phase contrast microscopy (PCM). The cloud point (Tc) of PMMI/PVDF blend was obtained using SALLS at the heating rate of 1 °C min?1 and it was found that PMMI/PVDF exhibited a low critical solution temperature (LCST) behavior similar to that of PMMA/PVDF. Moreover, Tc of PMMI/PVDF is higher than its melting temperature (Tm) and a large temperature gap between Tc and Tm exists. At the early phase‐separation stage, the apparent diffusion coefficient (Dapp) and the product (2Mk) of the molecules mobility coefficient (M) and the energy gradient coefficient (k) arising from contributions of composition gradient to the energy for PMMI/PVDF (50/50 wt) blend were calculated on the basis of linearized Cahn‐Hilliard‐Cook theory. The kinetic results showed that LLPS of PMMI/PVDF blends followed the spinodal decomposition (SD) mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1923–1931, 2008  相似文献   

11.
The binary blend of poly(ethylene oxide)/atactic poly(methyl methacrylate) is examined using hot-stage atomic-force microscopy (AFM) in conjunction with differential scanning calorimetry and optical microscopy. It was found possible to follow in real time the melting process, which reveals itself to be nonuniform. This effect is ascribed to the presence of lamellae having different thicknesses. The crystallization process of poly(ethylene oxide) from the miscible melt is also followed in real time by AFM, affording detailed images of the impingement of adjacent spherulites and direct observation of lamellar growth and subsequent polymer solidification in the interlamellar space.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2643–2651, 1998  相似文献   

12.
An investigation of the thermal stability of poly(methyl methacrylate) (PMMA) blends with poly(vinyl acetate) (PVAc) revealed that PVAc acts as a stabilizer as concerns thermal and photochemical degradation when the processes take place in air. The temperatures of decomposition of these blends are higher than that of pure PMMA. The efficiency of photodegradation and photooxidation in the blends is lower than that of pure PMMA.  相似文献   

13.
The dynamic mechanical and thermal properties of natural rubber/poly (methyl methacrylate) blends (NR/PMMA) with and without the addition of graft copolymer (NR‐g‐PMMA) have been investigated. Dynamic mechanical spectroscopy is used to examine the effect of compatibilizer loading on storage modulus (E′), loss modulus (E″) and loss tangent (tan δ) at different temperatures and at different frequencies. The morphology of the blends indicates that the size of the dispersed phase decreased by the addition of a few percent of the graft copolymer followed by a leveling off at higher concentrations. This is an indication of interfacial saturation. Attempts have been made to correlate morphology with dynamic mechanical properties. Various models have been used to fit the experimental viscoelastic results. Differential scanning calorimetry has been used to analyze the glass‐transition temperatures of the blends. The thermal stability of the blends has been analyzed by thermogravimetry. Compatibilized blends are found to be more thermally stable than uncompatibilized blends. Finally the miscibility and mechanical properties of the blends annealed above Tg are evaluated. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 525–536, 2000  相似文献   

14.
A combined optical and electron microscopical study has been carried out of the crystallization habits of poly(vinylidene fluoride) (PVF2) when it is crystallized from blends with noncrystallizable poly(ethyl acrylate) (PEA). The PVF2/PEA weight ratios were 0.5/99.5,5/95, and 15/85. Isothermal crystallization upon cooling the blends from the single-phase liquid region was carried out in the range 135–155°C, in which the polymer crystallizes in the α-orthorhombic unit cell form. The 0.5/99.5 blend yielded multilayered and planar lamellar crystals. The lamellae formed at low undercoolings were lozenge shaped and bounded laterally by {110} faces. This habit is prototypical of the dendritic lateral habits exhibited by the crystals grown from the same blend at high undercoolings as well as by the constituent lamellae in the incipient spherulitic aggregates and banded spherulites that formed from the 5/95 and the 15/85 blends, respectively. In contrast with the planar crystals grown from the 0.5/99.5 blend, the formation of the aggregates grown from the 5/95 blend is governed by a conformationally complex motif of dendritic lamellar growth and proliferation. The development of these aggregates is characterized by the twisting of the orientation of lamellae about their preferential b-axis direction of growth, coupled with a fan-like splaying or spreading of lamellae about that axis. The radial growth in the banded spherulites formed from the 15/85 blend is governed by a radially periodic repetition of a similar lamellar twisting/fan-like spreading growth motif whose recurrence corresponds to the extinction band spacing. This motif differs in its fan-like splaying component from banding due to just a helicoidal twisting of lamellae about the radial direction. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
王海军 《高分子科学》2015,33(2):349-361
The miscibility, isothermal crystallization kinetics and morphology of the poly(vinylidene fluoride)(PVDF)/poly(ethylene adipate)(PEA) blends have been studied by differential scanning calorimetry(DSC), optical microscopy(OM) and scanning electron microscopy(SEM). A depression of the equilibrium melting point of PVDF was observed. From the melting point data of PVDF, a negative but quite small value of the interaction parameter ?PVDF-PEA is derived using the Flory-Huggins equation, implying that PVDF shows miscibility with PEA to some extent. Nonisothermal and isothermal crystallization kinetics suggest that the crystallization rate of PVDF decreases with increasing the amount of PEA, and a contrary trend was found when PEA crystallizes with the increase of the amount of PVDF. It was further disclosed that the blend ratio and crystallization temperature affect the texture of PVDF spherulites greatly, which determines the subsequent crystallization of PEA. At high temperatures, e.g. 150 ℃, the band spacing of PVDF spherulites increases with the addition of PEA content and the spherulitic structure becomes more open. In this case, spherulitic crystallization of PEA is not observed for all blend compositions. At low temperatures, e.g. 130 ℃, for the PEA-rich blends, the interpenetrated structures are eventually formed by the penetration of the spherulites of PEA growing within the pre-existing PVDF spherulites.  相似文献   

16.
Blends of isotactic (natural) poly(3‐hydroxybutyrate) (PHB) and poly(methyl methacrylate) (PMMA) are partially miscible, and PHB in excess of 20 wt % segregates as a partially crystalline pure phase. Copolymers containing atactic PHB chains grafted onto a PMMA backbone are used to compatibilize phase‐separated PHB/PMMA blends. Two poly(methyl methacrylate‐g‐hydroxybutyrate) [P(MMA‐g‐HB)] copolymers with different grafting densities and the same length of the grafted chain have been investigated. The copolymer with higher grafting density, containing 67 mol % hydroxybutyrate units, has a beneficial effect on the mechanical properties of PHB/PMMA blends with 30–50% PHB content, which show a remarkable increase in ductility. The main effect of copolymer addition is the inhibition of PHB crystallization. No compatibilizing effect on PHB/PMMA blends with PHB contents higher than 50% is observed with various amounts of P(MMA‐g‐HB) copolymer. In these blends, the graft copolymer is not able to prevent PHB crystallization, and the ternary PHB/PMMA/P(MMA‐g‐HB) blends remain crystalline and brittle. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1390–1399, 2002  相似文献   

17.
18.
Both poly(vinylidene fluoride) (PVF2) and nylon 11 are ferroelectric polymers, and have been extensively studied over the past two decades. Blend films were made from mixed powders of these two polymers, which were then melt pressed and cold drawn. The ferroelectric properties of these blend films were investigated. The remnant polarization, Pr, was found to vary with composition, and to be 60% larger than that of either component at a 50/50 (by weight) composition where Pr exhibited a maximum of about 90 mC/m2. The magnitude of the coercive field, Ec, also exhibited a maximum at this composition. Both Pr and Ec are also observed to change significantly with the draw ratio. The results are discussed based on a two-phase dielectric composite model. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3217–3225, 1999  相似文献   

19.
The miscibility of polylactic acid (PLA) and atactic poly(methyl methacrylate) (PMMA) blends is investigated as a function of composition. The blends quenched from the melt show the presence of a single glass transition temperature dependent on the composition. The equilibrium melting temperature is determined using the Hoffman‐Weeks method and a depression is observed with increasing content of the PMMA component. The PLA spherulite growth rate and the overall isothermal crystallization rates decrease with increasing the amount of the amorphous component. The increase of the long period value as a function of the PMMA content in the blend is due to the segregation of PMMA component in the amorphous PLA interlamellar regions. The Lauritzen‐Hoffman secondary nucleation theory analysis shows that the segregation of the PMMA in the interlamellar region induces an increase in the surface entropy of folding. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1168–1177  相似文献   

20.
We employed high‐resolution 13C cross‐polarization/magic‐angle‐spinning/dipolar‐decoupling NMR spectroscopy to investigate the miscibility and phase behavior of poly(vinyl chloride) (PVC)/poly(methyl methacrylate) (PMMA) blends. The spin–lattice relaxation times of protons in both the laboratory and rotating frames [T1(H) and T(H), respectively] were indirectly measured through 13C resonances. The T1(H) results indicate that the blends are homogeneous, at least on a scale of 200–300 Å, confirming the miscibility of the system from a differential scanning calorimetry study in terms of the replacement of the glass‐transition‐temperature feature. The single decay and composition‐dependent T(H) values for each blend further demonstrate that the spin diffusion among all protons in the blends averages out the whole relaxation process; therefore, the blends are homogeneous on a scale of 18–20 Å. The microcrystallinity of PVC disappears upon blending with PMMA, indicating intimate mixing of the two polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2390–2396, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号