共查询到20条相似文献,搜索用时 13 毫秒
1.
Lianlian Fu Zhiyong Jiang Hans‐Friedrich Enderle Dieter Lilge Zhonghua Wu Sérgio S. Funari Yongfeng Men 《Journal of Polymer Science.Polymer Physics》2014,52(10):716-726
In order to elucidate microscopic deformation behavior at different locations in isotropic semicrystalline polymers, the structural evolution of a preoriented high‐density polyethylene sample during tensile deformation at different temperatures and along different directions with respect to the preorientation was investigated by means of combined in situ synchrotron small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) techniques. For samples stretched along preorientation, two situations were found: (1) at 30 °C, the sample broke after a moderate deformation, which is accomplished by the slippage of the microfibrils; (2) at 80 and 100 °C, fragmentation of original lamellae followed by recrystallization process was observed resulting in new lamellar crystals of different thickness depending on stretching temperature. For samples stretched perpendicular or 45° with respect to the preorientation, the samples always end up with a new oriented lamellar structure with the normal along the stretching direction via a stress‐induced fragmentation and recrystallization route. The thickness of the final achieved lamellae depends only on stretching temperature in this case. Compared to samples stretched along the preorientation direction, samples stretched perpendicular and 45° with respect to the preorientation direction showed at least several times of maxima achievable stress before macroscopic failure possibly due to the favorable occurrence and development of microdefects in those lamellar stacks with their normal parallel to the stretching direction. This result might have significant consequence in designing optimal procedure to produce high performance polyethylene products from solid state. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 716–726 相似文献
2.
Lianlian Fu Zhiyong Jiang Hans‐Friedrich Enderle Dieter Lilge Xiuhong Li Sérgio S. Funari Yongfeng Men 《Journal of Polymer Science.Polymer Physics》2014,52(5):368-376
Shrinkage and structural evolution of oriented high‐density polyethylene on heating were investigated by a combination of thermomechanical analysis (TMA) and synchrotron small angle X‐ray scattering (SAXS) techniques. Under varying load conditions, TMA study was performed to record the continuous length changes as a function of temperature. The value of shrinkage without any load could be evaluated by a linear extrapolation method, which eliminated the influence of the required tension by traditional TMA approach. In addition, the apparent modulus of network was used to describe the nature of entangled molecular network in detail during the shrinkage process. Importantly, it was found that the apparent modulus decreased gradually with increasing temperature. Furthermore, the SAXS data provided a direct evidence for the variation trend of shrinkage stress obtained by the tensile testing stage, and the results confirmed that the shrinkage force mainly originates from interfibrillar networks. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 368–376 相似文献
3.
Li‐Bong W. Lee Richard A. Register David M. Dean 《Journal of Polymer Science.Polymer Physics》2005,43(4):413-420
Blown films of different types of polyethylenes, such as branched low‐density polyethylene (LDPE) and linear high‐density polyethylene (HDPE), are well known to tear easily along particular directions: along the film bubble's transverse direction for LDPE and along the machine direction (MD) for HDPE. Depending on the resin characteristics and processing conditions, different structures can form within the film; it is therefore difficult to separate the effects of the crystal structure and orientation on the film tear behavior from the effects of the macromolecular architecture, such as the molecular weight distribution and long‐chain branching. Here we examine LDPE, HDPE, and linear low‐density polyethylene (LLDPE) blown films with similar crystal orientations, as verified by through‐film X‐ray scattering measurements. With these common orientations, LDPE and HDPE films still follow the usual preferred tear directions, whereas LLDPE tears isotropically despite an oriented crystal structure. These differences are attributed to the number densities of the tie molecules, especially along MD, which are considerably greater for linear‐architecture polymers with a substantial fraction of long chains, capable of significant extension in flow. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 413–420, 2005 相似文献
4.
Shigetaka Shimada Yasunori Takahasi Yusuke Sugino Shigeo Hara Katsuhiro Yamamoto 《Journal of Polymer Science.Polymer Physics》2004,42(9):1705-1714
The structural changes of polyethylene (PE) and photografted polyethylene‐g‐poly(hexyl methacrylate) (PE‐g‐PHMA) with the mechanical formation of pinholes were evaluated with differential scanning calorimetry, wide‐angle X‐ray scanning, and small‐angle X‐ray scanning. The crystallinity and the long period of the lamella increased with pricking under extremely high compression stress. The partial transformation of an orthorhombic crystal into a monoclinic one was also detected. The autonomic healing of pinholes in PE and PE‐g‐PHMA was studied in detail. The degree of healing increased with an increase in the grafting ratio of poly(hexyl methacrylate) (PHMA). Three mechanisms for the healing were investigated and related to the molecular motions of PE and PHMA grafted chains, which were evaluated with dynamic mechanical analyses. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1705–1714, 2004 相似文献
5.
N. W. Brooks A. P. Unwin R. A. Duckett I. M. Ward 《Journal of Polymer Science.Polymer Physics》1997,35(4):545-552
The deformation behavior of a range of polyethylene materials which differ with respect to both their short-chain branch content and molecular weight has been studied. Mechanical measurements carried out over a wide range of temperatures have shown that there is a sudden transition in the measured tensile yield strain at a temperature which is dependent on both the grade of material and the applied strain rate. Above the transition temperature all of the materials behave in a nonlinear viscoelastic manner and the wide-angle X-ray scattering patterns obtained have shown that at low applied strains reorientation of the lamellae is observed before necking. Below the transition temperature the materials all behave in an elastic-plastic manner and there is no evidence of lamellar reorientation before necking. This transition in yield mechanism is not apparent when considering the yield stress data alone. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 545–552, 1997 相似文献
6.
Joo B. P. Soares R. F. Abbott J. D. Kim 《Journal of Polymer Science.Polymer Physics》2000,38(10):1267-1275
Nineteen commercial high‐density polyethylene resins made with different polymerization processes and catalyst types were analyzed by high‐temperature size exclusion chromatography and crystallization analysis fractionation. The information obtained with these characterization techniques on the polymer chain structure was correlated to environmental stress cracking resistance. Environmental stress cracking resistance increases when the molecular weight and concentration of polymer chains that crystallize in trichlorobenzene between 75 and 85 °C increase. Polymer chains present in this crystallization range are assumed to act as tie molecules between crystal lamellae. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1267–1275, 2000 相似文献
7.
Robin Hoeher Thomas Raidt Maik Rose Frank Katzenberg Joerg C. Tiller 《Journal of Polymer Science.Polymer Physics》2013,51(13):1033-1040
Shape memory polymers (SMPs) are an important class of smart materials. So far the focus of such polymers was to find suited triggers for various application fields. Thus, the potential of most of these macromolecular networks regarding their maximally storable strain capability was not explored. In this study, the polyethylenes HDPE, LDPE, and ethylene‐1‐octene (EOC) were systematically investigated with respect to their strain storage potential. To achieve maximum strains, the polymers were chemically cross‐linked in such a way that they are at the borderline between thermoplastics and elastomers. All investigated polymers showed higher strain storage than literature reported systems and exhibited excellent shape memory parameters. The highest stored strain was found for networks of EOC with fully recoverable 1400%. Interestingly, this value could not be enlarged by using EOCs with higher molecular weight, which is probably due to increasing content of entanglements as confirmed by Mooney‐Rivlin. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1033–1040 相似文献
8.
Giuseppe Leone Fabio Bertini Maurizio Canetti Laura Boggioni Paola Stagnaro Incoronata Tritto 《Journal of polymer science. Part A, Polymer chemistry》2008,46(16):5390-5403
Highly filled polyethylene (PE)‐based nanocomposites were obtained by insitu polymerization technique. An organically modified montmorillonite, Cloisite® 15A (C15A), was previously treated with methylaluminoxane (MAO) to form a supported cocatalyst (C15A/MAO) before being contacted with a zirconocene catalyst. The main features of C15A/MAO intermediates were studied by elemental analysis, TGA, TGA‐FTIR, WAXD, and TEM. MAO reacts with the clay, replaces most of the organic surfactant within the clay galleries and destroys the typical crystrallographic order of the nanoclay. The catalytic activity in the presence of C15A/MAO is higher than in ethylene polymerization without any inorganic filler and increases with MAO supportation time. This indicates that part of the polymer chains grows within the clay galleries, separates them, and makes it possible to tune the final morphology of the composites. The polymerization results and the influence of C15A pretreatment and polymerization conditions on thermal and morphological properties of the hybrid PE/C15A nanocomposites are presented. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5390–5403, 2008 相似文献
9.
Giuliana Gorrasi Maria Sarno Antonio Di Bartolomeo Diana Sannino Paolo Ciambelli Vittoria Vittoria 《Journal of Polymer Science.Polymer Physics》2007,45(5):597-606
High energy ball milling (HEBM) was utilized, as an innovative process, to incorporate carbon nanotubes (CNTs) into a polyethylene (PE) matrix avoiding: high temperatures, solvents, ultrasonication, chemical modification of carbon nanotubes. Composites with 1, 2, 3, 5, and 10 wt % of carbon nanotubes were prepared. Films were obtained melting the powders in a hot press. Morphology and physical properties (thermal, mechanical, electrical properties) were evaluated. The used processing conditions allowed to obtain a satisfactory level of dispersion of CNTs into the PE matrix with a consequent improvement of the physical properties of the samples. The thermal degradation was significantly delayed already with 1–2% wt of CNTs. The mechanical properties resulted greatly improved for low filler content (up to 3% wt). The electrical measurements showed a percolation threshold in the range 1–3 wt % of CNTs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 597–606, 2007 相似文献
10.
Liangming Wei Tao Tang Baotong Huang 《Journal of polymer science. Part A, Polymer chemistry》2004,42(4):941-949
A novel approach to the preparation of polyethylene (PE) nanocomposites, with montmorillonite/silica hybrid (MT‐Si) supported catalyst, was developed. MT‐Si was prepared by depositing silica nanoparticles between galleries of the MT. A common zirconocene catalyst [bis(cyclopentadienyl)zirconium dichloride/methylaluminoxane] was fixed on the MT‐Si surface by a simple method. After ethylene polymerization, two classes of nanofillers (clay layers and silica nanoparticles) were dispersed concurrently in the PE matrix and PE/clay–silica nanocomposites were obtained. Exfoliation of the clay layers and dispersion of the silica nanoparticles were examined with transmission electron microscopy. Physical properties of the nanocomposites were characterized by tensile tests, dynamic mechanical analysis, and DSC. The nanocomposites with a low nanofiller loading (<10 wt %) exhibited good mechanical properties. The nanocomposite powder produced with the supported catalyst had a granular morphology and a high bulk density, typical of a heterogeneous catalyst system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 941–949, 2004 相似文献
11.
Howard Wang 《Journal of polymer science. Part A, Polymer chemistry》2004,42(17):3133-3147
With time-resolved small-angle neutron scattering (TR-SANS), the crystallization kinetics of polyethylene from deuterated o-xylene solutions upon a temperature jump have been investigated. On the basis of a morphological model of coexisting lamellar stacks and coil chains in solution, experimental data have been quantitatively analyzed to provide structural information, such as the lamellar long period, the lamellar crystal thickness, the thickness of the amorphous layers between lamellae, the degree of crystallinity, and the crystal growth rate at various degrees of undercooling. The viability of TR-SANS for studying polymer crystallization is demonstrated through the consistency of these measurements and well-established knowledge of polyethylene crystallization from xylene solutions. One unique feature of this experimentation is that both the growth of lamellar crystals and the condensation of coil chains from solution are monitored simultaneously. The ratio of the crystal growth to the chain consumption rate decreases rapidly with a decreasing degree of undercooling. The Avrami analysis suggests that the growth mechanism approaches two-dimensional behavior at higher temperatures, and this is consistent with the observation of an increasing ratio of the sharp-surface area to the bulk crystal growth rate with temperature. The limitations, possible remedies, and potentials of TR-SANS for studying polymer crystallization are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3133–3147, 2004 相似文献
12.
Fernando Catalina Carmen Peinado Norman S. Allen Teresa Corrales 《Journal of polymer science. Part A, Polymer chemistry》2002,40(19):3312-3326
The thermal stabilizing efficiency of a range of phenolic antioxidants (Lowinox CA22, Lowinox WSP, Lowinox TBP6, Irganox 3114, Irganox 1330, and Cyanox 1790) was determined in polyethylene films with chemiluminescence and hydroperoxide analysis and compared with standard systems based on Irganox 1010 and 1076. Under both nitrogen and oxygen conditions, good correlations were obtained between the two methods, confirming the importance and role of the hydroperoxide functionality and its stability in the oxidative process. Chemiluminescence decay rates correlated well with the initial corresponding hydroperoxide contents, which were measures of the antioxidant efficiencies in the polymer. The antioxidant structure and volatility (melting points) were important parameters to consider in any such correlations and related very much to the methodology and conditions of analysis (i.e., the temperature and atmosphere). Some of the antioxidants themselves under nitrogen exhibited strong chemiluminescence, which appeared to be a legacy associated with their manufacturing history and the partial oxidation of their structures, which gave peroxide functionalities. This was more notable for the complex antioxidant structures. Under oxygen, higher levels of chemiluminescence were observed, and this was indicative of some level of oxidation associated with the antioxidant structures. With temperature‐ramping experiments, the chemiluminescence emission was significant and only observed at temperatures close to the melting points of the additives and/or polymer. Mobility was clearly an essential feature of this reaction emission because chemiluminescence was well observed when the molten state was reached. Under normal practical conditions, such levels of chemiluminescence, because of employed stabilizers, do not contribute significantly to the chemiluminescence emissions of stabilized polymer materials. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3312–3326, 2002 相似文献
13.
The mechanism of thermal actuation for poly(vinylidene fluoride) (PVDF) and polyethylene (PE) tie molecules has been investigated using molecular dynamics simulations. Tie molecules are found in semicrystalline polymers and are polymer chains that link two (or more) crystalline lamellae, allowing for the transfer of force between these regions. A novel simulation technique has been developed to enable measurement of changes in the tie molecule length upon heating. We investigate the dependence of the percentage actuation observed upon heating, on the external applied force that stretches the tie molecules, the temperature range used for heating as well as the length and the number of tie molecules. Two molecular level mechanisms for actuation are identified. An entropically driven mechanism occurs at low applied forces and is applicable to all flexible polymers. A second mechanism due to conformational changes is observed for PVDF but not for PE at intermediate applied forces. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2223–2232 相似文献
14.
P. Stanescu J. C. Majest C. Carrot 《Journal of Polymer Science.Polymer Physics》2005,43(15):1973-1985
We predict the linear viscoelastic behavior of low‐density polyethylene from both the molecular‐weight distribution and the individual structure of each species in the sample. The “structure map” of the samples was derived from SEC measurements. This map is a three‐dimensional representation of the seniority distribution, and represents the probability of existence of a segment with seniority i in a molecule of molecular weight M. Moreover, results from the kinetics of the free radical polymerization of polyethylene show that the molecular weight of the segments increases according to their seniority. Finally, tube dilatation was generalized to the case of polydisperse samples. The solvent behavior of the relaxed segments was included through a continuous function of time that describes the instantaneous state of the entanglement network in the sample. The comparison between the theoretical predictions and the experimental data shows a good agreement over the whole experimental frequency range. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43:1973–1985, 2005 相似文献
15.
C. H. Stephens H. Yang M. Islam S. P. Chum S. J. Rowan A. Hiltner E. Baer 《Journal of Polymer Science.Polymer Physics》2003,41(17):2062-2070
A series of chlorine‐containing polymers were prepared by ring‐opening metathesis polymerization (ROMP) followed by hydrogenation. This synthesis route was chosen specifically so that chain microstructures would be obtained that resembled copolymers of ethylene and vinyl chloride. The chlorine content was varied by the copolymerization of 5‐chlorocyclooctene and cyclooctene. Differential scanning calorimetry, light microscopy, tapping‐mode atomic force microscopy, wide‐angle X‐ray diffraction (WAXD), and density were employed to characterize the polymers. The copolymers had certain restrictions on the length of the methylene sequence between substituted carbons, however, ROMP copolymerization introduced enough variation in the methylene sequence length that model copolymers with the equivalent of 14 mol % vinyl chloride or less closely resembled random copolymers of ethylene and vinyl chloride. These materials organized as spherulites and exhibited the orthorhombic crystal form. Constraints on the placement of chlorine atoms strongly affected the crystallization of polymers with more than the equivalent of 14 mol % vinyl chloride. More regular chlorine substitution along the polyethylene chain translated into better ordered crystal structures with sharp melting peaks. The granular morphology of these materials at ambient temperature was interpreted as fringed micellar crystals. The WAXD patterns provided definitive evidence that chains in the fringed micelle took the hexagonal crystal form. The lower density hexagonal form facilitated the crystallization of short ethylene sequences and accommodated chlorine atoms more easily than the orthorhombic form. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2062–2070, 2003 相似文献
16.
Roland Seguela 《Journal of Polymer Science.Polymer Physics》2005,43(14):1729-1748
Intercrystalline molecular connections in semicrystalline polymers have been the subject of numerous discussions and controversies. Nevertheless, there is one point of agreement: such intercrystalline tie molecules have a prime role in the mechanical and use properties of the materials, notably the resistance to slow crack growth. This article is a critical review of the mechanisms of generation of the tie molecules during the stage of crystallization and of the experimental and theoretical assessment of their concentration. Polyethylene and related materials are mainly studied. The contribution of chain entanglements is also discussed in parallel with tie molecules. Particular attention is paid to Huang and Brown's statistical approach, which appears to be the most appropriate one for predictive purposes and has aroused much interest from various authors. Attempts are made to provide solutions to the shortcomings of this model. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1729–1748, 2005 相似文献
17.
Ki Hyun Wang Min Ho Choi Chong Min Koo Mingzhe Xu In Jae Chung Min Cheol Jang Sun Woong Choi Hyun Hoon Song 《Journal of Polymer Science.Polymer Physics》2002,40(14):1454-1463
Maleated polyethylene (PEMA)/silicate nanocomposites with a different aspect ratio of silicate and maleated PEMA/SiO2 composite were prepared by melt intercalation. The nanocomposites with a high aspect ratio silicate (montmorillonite) showed a faster decrease in the terminal slope of the storage modulus and a steeper increase in complex viscosity than those with a low aspect ratio silicate (laponite) and SiO2. The addition of montmorillonite increases the crystallization and the melting temperature of PEMA but decreases above 3 vol % of the silicate content because of the increased viscosity. The nanocomposite with montmorillonite showed the highest yield strength and secant modulus among the composites because of the highest aspect ratio of the filler. It also revealed strong interfacial adhesion with the matrix and orientation during tensile deformation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1454–1463, 2002 相似文献
18.
Ruihua Lv Wenfei Xu Bing Na Qin Zhang Qiang Fu 《Journal of Polymer Science.Polymer Physics》2008,46(12):1202-1206
Oriented high‐density polyethylene (HDPE), prepared by melt extrusion drawing, has been employed to address the correlation between cavitation and lamellar fragmentation at large strain. This has been done by investigating the volume strain, elastic recovery properties, and microscopic morphology. The results indicate that the reversible volume strain becomes saturation at a true strain of about 0.3, which is essentially consistent with the critical one related to lamellar fragmentation (point C). Morphological observations on the deformed samples provide structural insights into above deformation behaviors. Enlarged voids are hard to recover due to dominant plastic deformation of crystals once lamellar fragmentation sets in and thus a transition of reversible volume strain with strain is presented. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1202–1206, 2008 相似文献
19.
Erik B. Berda Travis W. Baughman Kenneth B. Wagener 《Journal of polymer science. Part A, Polymer chemistry》2006,44(17):4981-4989
Acyclic diene metathesis polymerization allows the synthesis of sequenced polyethylene copolymers via step-growth propagation, thereby avoiding the inherent side reactions associated with chain polymerization. Here we review the synthesis and thermal behavior of ADMET polyethylene (PE) as well as ethylene/propylene (EP), ethylene/butene (EB), ethylene/octane (EO), and ethylene/vinyl ether (EVE) copolymers prepared by ADMET. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4981–4989, 2006 相似文献
20.
The heat of fusion measured with differential scanning calorimetry (DSC) is typically divided by a constant value of the heat of fusion of 100% polyethylene (PE) crystal (ΔH) for the estimation of the fraction crystallinity of PE copolymers, regardless of the density [i.e., the short‐chain branching (SCB) concentration]. In this work, values of ΔH of about 288 J/g were determined with a combined DSC and X‐ray diffraction (XRD) method for a series of PE copolymers containing SCB from 0 to 50 Br/1000 C (density = 0.965–0.865 g/cc). There was no systematic change in ΔH observed across this density range. This result supports the suitability of determining the fraction crystallinity of PE of any density by the simple division of the observed heat of fusion determined by DSC by a constant value of ΔH. This DSC method yielded values of PE crystallinity in good agreement with corresponding values determined by XRD for a series of PE copolymers. The determination of ΔH involved a small precision error for higher density (lower SCB) PEs, but the precision error increased for lower density (i.e., higher SCB) PEs. This was due to the difficulty in measuring the heat of fusion for lower density PEs, which exhibited low values of the heat of fusion and melted only slightly above room temperature, and due to the difficulty of measuring lower values of crystallinity by XRD. The crystal thickness measured by small‐angle X‐ray scattering for this series of PE copolymers decreased exponentially from about 280 to 6 Å. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1637–1643, 2002 相似文献