首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We developed a convenient and fast approach to preparing close-packed two-dimensional (2-D) particle arrays on mercury surfaces. Addition of cosolvents, such as alcohols, to aqueous colloidal particle suspensions induces spreading and self-assembly of the particles into 2-D arrays on top of the mercury surface. We can fabricate large-area close-packed 2-D arrays (>70 cm(2)) within 30 s. We attached these 2-D arrays to functional hydrogel films such that the 2-D array spacings were altered by the hydrogel volume response to the environment. We directly observed the hydrogel volume induced 2-D array spacing changes by using confocal laser scanning microscopy to monitor the spacings of fluorescent polystyrene particle 2-D arrays in response to changes in pH, solvent composition, temperature, etc.  相似文献   

3.
Self-organization of large gold nanoparticle arrays   总被引:3,自引:0,他引:3  
  相似文献   

4.
We study the dipolar coupling of gold nanoparticles arranged in regular two-dimensional arrays by extinction micro-spectroscopy. When the interparticle spacing approaches the plasmon resonance wavelength of the individual particles, an additional band of very narrow width emerges in the extinction spectrum. By systematically changing the particles dielectric environment, the particles shape, the grating constant and angle of incidence, we show how this band associated to a grating induced-resonance can be influenced in strength and spectral position. The spectral position can be qualitatively understood by considering the conditions for grazing grating orders whereas the strength can be related to the strength of dipolar scattering from the individual particles.  相似文献   

5.
6.
In this paper, we report our recent work on preparing two-dimensional patterned microstructure arrays using three-dimensional colloidal crystals as templates, namely, colloidal crystal-assisted lithography. Two alternative processes are described and involved in colloidal crystal-assisted lithography. One is based upon imprinting the polymer films with three-dimensional silica colloidal crystals, and the other is based upon chemically depositing Ag microstructures on Au substrates covered by polymer colloidal crystals. By varying the experimental conditions in the colloidal crystal-assisted lithography process, we can intentionally control the morphologies of the resulting microstructures. The resultant Ag-coated Au substrates can be used as surface-enhanced Raman scattering substrates, and they would provide an ideal system for the mechanism study of surface-enhanced Raman scattering. We expect that colloidal crystal-assisted lithography will be a versatile approach which can be applied to patterning other materials such as functional molecules, polymers, oxides, and metals.  相似文献   

7.
We investigate the photoconductance properties of oligo(phenylene vinylene) (OPV) molecules in metal-molecule-metal junctions. The molecules are electrically contacted in a two-dimensional array of gold nanoparticles. The nanoparticles in such an array are separated by only few nanometers. This allows to bridge the distance between the nanoparticles with molecules considered as molecular wires such as OPV. We report on the photoconductance of electrically contacted OPV upon resonant optical excitation of the molecules. This resonant photoconductance is sublinear in laser intensity, which suggests that trap state dynamics of the optically excited charge carriers dominate the optoelectronic response.  相似文献   

8.
An interconnected Au nanoparticle arrangement is obtained by electrodeposition from Au(III) soluble complexes within the pore system of block-copolymer templated mesoporous titania films. The resulting Au@TiO2 nanocomposites (5 nm Au particles, 5.5 nm amorphous titania walls) have the electrochemical behavior of a gold electrode of high surface area. The attenuation of Au surface plasmon due to -OH electroadsorption and the existence of mixed localized states in these Au@TiO2 nanocomposites are observed by in situ spectroelectrochemistry.  相似文献   

9.
We present a new method for laser direct writing in self-assembled hydrogel microparticle colloidal crystals via photothermal excitation of co-assembled colloidal Au particles. Close-packed colloidal crystals are assembled from approximately 224 nm diameter, thermoresponsive, poly-N-isopropylacrylamide hydrogel microparticles (microgels); these crystals display sharp Bragg diffraction peaks in the mid-visible region of the spectrum due to the periodic dielectric function of the assembly. Raising the temperature of the crystal above the characteristic volume phase transition temperature of the microgel particles results in a reversible melting of the crystalline material due to the particle-based deswelling event. This transition can be used either to anneal defects from the crystalline material or to controllably and reversibly convert the assembly from the colored, crystalline state to a nondiffracting glassy material. Crystal-to-glass transitions are similarly accomplished via photothermal excitation when 16 nm diameter colloidal Au particles are co-assembled with the responsive microgels. Excitation of the colloidal Au plasmon absorption with a frequency doubled Nd:YAG laser (lambda = 532 nm) results in optically directed conversion of either glasses to crystals or crystals to glasses, depending on the initial state of the assembly and the illumination time. These results represent a fundamentally new method for the patterning of self-assembled photonic materials.  相似文献   

10.
Monodispersed spherical gold particles ranging in modal diameter from 80 nm to 5 μm, were prepared by reducing tetrachloroauric(III) acid with iso-ascorbic acid in aqueous solutions at 20°C. The particle size was altered by changing the pH, which affected the composition of gold(III) solute complexes. The latter controlled the redox potential of the system, essential to the formation of the initial nanosize gold dispersions. Depending on the experimental conditions, the resulting primary particles remained either stable or they aggregated to form much larger uniform spheres. The mechanisms of the precipitation of the precursors (primary) particles and of their mutual interactions to yield the final dispersions are discussed.  相似文献   

11.
We demonstrate a high-resolution in situ experimental method for performing simultaneous size classification and characterization of functional gold nanoparticle clusters (GNCs) based on asymmetric-flow field flow fractionation (AFFF). Field emission scanning electron microscopy, atomic force microscopy, multi-angle light scattering (MALS), and in situ ultraviolet-visible optical spectroscopy provide complementary data and imagery confirming the cluster state (e.g., dimer, trimer, tetramer), packing structure, and purity of fractionated populations. An orthogonal analysis of GNC size distributions is obtained using electrospray-differential mobility analysis (ES-DMA). We find a linear correlation between the normalized MALS intensity (measured during AFFF elution) and the corresponding number concentration (measured by ES-DMA), establishing the capacity for AFFF to quantify the absolute number concentration of GNCs. The results and corresponding methodology summarized here provide the proof of concept for general applications involving the formation, isolation, and in situ analysis of both functional and adventitious nanoparticle clusters of finite size.  相似文献   

12.
In this paper we demonstrate a facile and efficient way to fabricate poly(dimethylsiloxane) (PDMS) molds with hexagonal non-close-packed (ncp) arrangements of microwells by casting PDMS prepolymer onto two-dimensional (2D) ncp colloidal crystals. The templates of the 2D ncp colloidal crystals were fabricated via coupling lift-up soft lithography and solvent-swelling. We found that the depths of the microwells together with the lattice spacing can be adjusted by the sphere interstices and chemical composition of the 2D ncp colloidal crystals. The relationship of the surface character of the templates with the depths of the microwells can be explained by the wetting behavior of PDMS prepolymer on the rough surface. Contact angle measurements are consistent with the experimental results of the microwells in depth and agree well with the Cassie-Baxter theory. There are at least three advantages of the approach. First, the depth and distance of the microwells can be controlled. Second, PDMS molds can be easily peeled from the surfaces of the templates, which results in reusing the original templates to make new molds. Third, this method can be applied to other materials, such as photopolymerizable resin or thermosetting resin. The potential application of the microwells is as microlenses to make a pattern or as microvials in bioanalytical techniques.  相似文献   

13.
This communication reports a simple yet versatile nonlithographic approach for fabricating wafer-scale periodic nanohole arrays from a large variety of functional materials, including metals, semiconductors, and dielectrics. Spin-coated two-dimensional (2D) nonclose-packed colloidal crystals are used as first-generation shadow masks during physical vapor deposition to produce isolated nanohole arrays. These regular nanoholes can then be used as second-generation etching masks to create submicrometer void arrays in the substrates underneath. Complex patterns with micrometer-scale resolution can be made by standard microfabrication techniques for potential device applications. These 2D-ordered nanohole arrays may find important technological applications ranging from subwavelength optics to interferometric biosensors.  相似文献   

14.
The reversible assembly of β-cyclodextrin-functionalized gold NPs (β-CD Au NPs) is studied on mixed self-assembled monolayer (SAM), formed by coadsorption of redox-active ferrocenylalkylthiols and n-alkanethiols on gold surfaces. The surface coverage and spatial distribution of the β-CD Au NPs monolayer on the gold substrate are tuned by the self-assembled monolayer composition. The binding and release of β-CD Au NPs to and from the SAMs modified surface are followed by surface plasmon resonance (SPR) spectroscopy. The redox state of the tethered ferrocene in binary SAMs controls the formation of the supramolecular interaction between ferrocene moieties and β-CD-capped Au NPs. As a result, the potential-induced uptake and release of β-CD Au NPs to and from the surface is accomplished. The competitive binding of β-CD Au NPs with guest molecules in solution shifted the equilibrium of the complexation-decomplexation process involving the supramolecular interaction with the Fc-functionalized surface. The dual controlled assembly of β-CD Au NPs on the surface enabled to use two stimuli as inputs for logic gate activation; the coupling between the localized surface plasmon, associated with the Au NP, and the surface plasmon wave, associated with the thin metal surface, is implemented as readout signal for "AND" logic gate operations.  相似文献   

15.
Zeolite 4A (LTA) has been successfully synthesized by a hydrothermal method, where kaolin was used as silica and alumina source. The synthesized zeolite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser granulometry, and FTIR spectroscopy. XRD data from the Rietveld refinement method confirmed only one crystallographic phase. Zeolite A morphology was observed by SEM analysis, and it showed well-defined crystals with slightly different sizes but with the same cubic shape. Particle size distribution of the crystals was confirmed by laser granulometry, whereas FTIR spectroscopy revealed significant structural differences between the starting material and the final zeolite product used as water softener.  相似文献   

16.
Droplets containing polymer particles were deposited on a substrate. Poly(N-isopropylacrylamide) (PNIPAM) hydrogel and particles with PNIPAM graft chains on the surface self-assembled into a two-dimensional (2-D) superlattice when their dilute dispersions were dried on substrates. The capillary force between the particles induced ordered array formation during water evaporation. The presence of a PNIPAM layer on the particle surface gave the particles steric stability during ordered array formation. By grafting PNIPAM chains on particle surfaces by living radical polymerization, we successfully controlled the structural patterns of the colloidal arrays. These, controllable, 2-D colloidal arrays were generated on various substrates upon air-drying.  相似文献   

17.
The addition of dodecanethiol to a solution of oleylamine-stabilized gold nanoparticles in chloroform leads to aggregation of nanoparticles and formation of colloidal crystals. Based on results from dynamic light scattering and scanning electron microscopy we identify three different growth mechanisms: direct nanoparticle aggregation, cluster aggregation, and heterogeneous aggregation. These mechanisms produce amorphous, single-crystalline, polycrystalline, and core-shell type clusters. In the latter, gold nanoparticles encapsulate an impurity nucleus. All crystalline structures exhibit fcc or icosahedral packing and are terminated by (100) and (111) planes, which leads to truncated tetrahedral, octahedral, and icosahedral shapes. Importantly, most clusters in this system grow by aggregation of 60-80 nm structurally nonrigid clusters that form in the first 60 s of the experiment. The aggregation mechanism is discussed in terms of classical and other nucleation theories.  相似文献   

18.
Patterned arrays of gold nanoparticles were fabricated using a simple dipping method that makes use of their specific interactions with nano-domains of carboxylic acid on a block copolymer template. Polystyrene-block-poly(tert-butyl acrylate) on the SU-8 photoresist pattern was selectively transformed to polystyrene-block-poly(acrylic acid). Au nanoparticles are selectively immobilized on the resulting carboxylic acid patterns to produce well-defined patterned Au nanoparticle arrays. This stable and robust template can be used to obtain any patterned nonaggregated metal or inorganic nanoparticle arrays.  相似文献   

19.
This article reports the use of the scanning electrochemical microscope (SECM) to investigate the electronic properties of Langmuir monolayers of alkane thiol protected gold nanocrystals (NCs). A substantial increase in monolayer conductivity upon mechanical compression of the Au NC monolayer is reported for the first time. This may be the room temperature signature of the insulator to metal transition previously reported for comparable silver NC monolayers. Factors influencing the conductivity of the monolayer NC array are discussed.  相似文献   

20.
Electrochemical techniques are widely used for the fabrication of nanostructured materials, yet a desired high-density nanoparticle arrays remains a challenge. Here large-area and high-density gold nanoparticle arrays with sub-10 nm gaps have been, for the first time, synthesized on Si(1 0 0) substrate within an electrochemical deposition system via the application of an unusually high over-potential. The extremely high over-potential contributes to the relatively small critical island size and high nucleation rate. It is believed that this method can be extended to the electrochemical fabrication nanoparticle arrays of other materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号