首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
二苯醚烷基化反应中酸性离子液体的循环使用   总被引:3,自引:0,他引:3  
朴玲钰  韩扬  寇元 《物理化学学报》2004,20(9):1083-1088
使用酸性离子液体催化二苯醚与十二烯烷基化反应,考察了离子液体的失活原因,提出了循环使用离子液体的解决办法.在二苯醚与十二烯烷基化反应中, Lewis酸性离子液体不能多次循环使用的原因是离子液体与二苯醚相互作用导致具有催化活性的Al2Cl72-分解、流失.改变离子液体的阳离子不能从本质上解决其与二苯醚间的相互作用.适时补加损失量的AlCl3使离子液体的Lewis酸性得以恢复,可以解决体系中酸性离子液体循环使用问题,循环使用8次后产物产率仍保持90%左右.  相似文献   

2.
超临界CO2/离子液体体系   总被引:2,自引:0,他引:2  
超临界CO2和离子液体是两种具有优异性能的绿色化学试剂,本文介绍了将两者结合反应,分离体系的物化性质和多种绿色化学过程。利用超临界CO2可以广泛地萃取离子液体中的不挥发性化合物而不导致离子液体及其中催化剂的流失,在加氢、醛化、甲酰化等反应,分离过程中的应用表明,过程具有很好的反应分离特性和环境友好性,应用前景广阔。  相似文献   

3.
以Al2O3、SiO2和活性炭为载体,采用浸渍法制备了负载型离子液体([NH2p-mim]X:X= Br-,PF6-,BF4-,NTf2-)CO2吸附剂,利用红外光谱(FT-IR)、元素分析(EA)、热重差热分析(TG-DTA)等技术对负载型离子  相似文献   

4.
Temperature dependent molar conductances and fluidities of bisulfate and ethyl sulfate anion-based ionic liquids were measured. The extent of dissociation of the ionic liquids was estimated from the Walden plot in term of ionicity. The ionicity mainly depends on the magnitude of Coulombic forces, altered by the anion’s Lewis basicity. Aqueous solutions of aprotic ionic liquids, in general, possesses ionicity in the range of ≈70–99%. This article reveals that the substitution of the anion by bisulfate and ethylsulfate reduces the ionicity of aqueous solution of these ionic liquids to the range of 10–37%. This is very close to that exhibited by some of the protic ionic liquids and phosphonium based ionic liquids with sweetner anions. The concentration dependent molar conductance of these ionic liquids has been fitted to Mahiuddin and Ismail’s equation. To our surprise, the molar conductances of bisulfate-based aprotic ionic liquids are remarkably high, even though these ionic liquids possess lower ionicity.  相似文献   

5.
二茂铁在几种离子液体中的迁移行为   总被引:3,自引:1,他引:2  
采用循环伏安法研究了二茂铁(Fc)在几种离子液体中的迁移行为. 计算了Fc在各离子液体中的扩散系数和粘度系数,探讨了离子液体粘度与离子液体结构之间的关系. 实验结果表明, 离子液体的粘度随阳离子取代基碳链长度的增加而增加, 随阴离子对称性的增加而增加.  相似文献   

6.
Ionic liquids are a class of solvents widely studied in the literature for various applications. As a subclass of ionic liquids, redox ionic liquids can endow charge exchange properties (electrons transfer) to these electrolytes for electrochemical energy storage. In this review article, we propose to study this family of ionic liquids and suggest a chronological classification. We introduce five generations of redox ionic liquids with different basic compounds such as polyethylene glycol, ferrocene, different linker lengths, TFSI anion, and biredox ionic liquids. The versatility of the redox ionic liquids synthesis will be discussed as well as the fundamental and applied aspects of their use as electrolytes, which have high charge densities. The impact of the redox ionic liquids on the electrochemical mechanisms will be described. We also present how the redox shuttle effect, detrimental to supercapacitors, can be prevented while it can be used to improve lithium-ion batteries.  相似文献   

7.
Porous liquids are a newly developed porous material that combine unique fluidity with permanent porosity, which exhibit promising functionalities for a variety of applications. However, the apparent incompatibility between fluidity and permanent porosity makes the stabilization of porous nanoparticle with still empty pores in the dense liquid phase a significant challenging. Herein, by exploiting the electrostatic interaction between carbon networks and polymerized ionic liquids, we demonstrate that carbon‐based porous nanoarchitectures can be well stabilized in liquids to afford permanent porosity, and thus opens up a new approach to prepare porous carbon liquids. Furthermore, we hope this facile synthesis strategy can be widely applicated to fabricate other types of porous liquids, such as those (e.g., carbon nitride, boron nitride, metal–organic frameworks, covalent organic frameworks etc.) also having the electrostatic interaction with polymerized ionic liquids, evidently advancing the development and understanding of porous liquids.  相似文献   

8.
壳聚糖在4种咪唑型离子液体中溶解性的研究   总被引:1,自引:0,他引:1  
研究、比较了壳聚糖在4种咪唑型离子液体氯化1-丁基-3-甲基咪唑([BMIM]Cl)、1-丁基-3-甲基咪唑醋酸盐([ BMIM] Ac)、1-乙基-3-甲基咪唑醋酸盐([EMIM] Ac)和氯化1-烯丙基-3-甲基咪唑([AMIM] Cl)中的溶解性,提出了可能的溶解机理,并利用红外光谱(FTIR)、热重分析(TGA...  相似文献   

9.
改性离子液体中异丁烷与丁烯的烷基化反应   总被引:16,自引:2,他引:16  
向由无水三氯化铝和盐酸三乙基胺合成的离子液体中溶入不同过渡金属(铜、铁、锌等)离子,考察它们对离子液体催化异丁烷与丁烯烷基化反应性能的影响。结果表明:过渡金属离子的加入能不同程度地影响离子液体的催化性能。溶入Cu2+和Cu+后,离子液体的催化性能有显著的改善,当Cu2+的摩尔加入量为三氯化铝的5%时,烷基化油收率达到丁烯体积的178%,对C8的选择性为75%,烷基化油辛烷值(RON)为92.2,并且离子液体可以重复使用。  相似文献   

10.
室温离子液体反应介质中叔丁醇氢酯基化反应的研究   总被引:12,自引:0,他引:12  
乔煜  邓友全 《化学学报》2002,60(6):996-1000
反应温度为100~140 ℃,CO初始压力为2~6 MPa条件下,研究了室温离子液 体与过渡金属三苯基膦配合物构成的催化反应体系中,叔丁醇与乙醇的氢酯基化反 应。同有机溶剂作为反应介质相比,室温离子液体中具有更好的催化活性,并且叔 丁醇可经羰化反应直接生成特戊酸乙酯,产物与催化体系不溶,可以容易地实现分 离。详细考察了金属配合物、离子液体、温度、压力与时间的不同对反应的影响。  相似文献   

11.
翟翠萍  刘学军  王键吉 《化学进展》2009,21(5):1040-1051
室温离子液体作为一种绿色溶剂和功能材料,越来越引起人们的重视,其研究手段也越来越多。本文着重概述了核磁共振方法在测定离子液体的结构、纯度及性质,研究离子液体阴阳离子间的相互作用、离子液体与其他化合物的相互作用、离子液体及其在混合体系中的动力学特征、离子液体在溶液中的聚集行为,以及测定离子液体的热力学参数中的应用。  相似文献   

12.
Improving carbon dioxide solubility in ionic liquids   总被引:4,自引:0,他引:4  
Previously we showed that CO2 could be used to extract organic molecules from ionic liquids without contamination of the ionic liquid. Consequently a number of other groups demonstrated that ionic liquid/CO2 biphasic systems could be used for homogeneously catalyzed reactions. Large differences in the solubility of various gases in ionic liquids present the possibility of using them for gas separations. More recently we and others have shown that the presence of CO2 increases the solubility of other gases that are poorly soluble in the ionic liquid phase. Therefore, a knowledge and understanding of the phase behavior of these ionic liquid/CO2 systems is important. With the aim of finding ionic liquids that improve CO2 solubility and gaining more information to help us understand how to design CO2-philic ionic liquids, we present the low- and high-pressure measurements of CO2 solubility in a range of ionic liquids possessing structures likely to increase the solubility of CO2. We examined the CO2 solubility in a number of ionic liquids with systematic increases in fluorination. We also studied nonfluorinated ionic liquids that have structural features known to improve CO2 solubility in other compounds such as polymers, for example, carbonyl groups and long alkyl chains with branching or ether linkages. Results show that ionic liquids containing increased fluoroalkyl chains on either the cation or anion do improve CO2 solubility when compared to less fluorinated ionic liquids previously studied. It was also found that it was possible to obtain similar, high levels of CO2 solubility in nonfluorous ionic liquids. In agreement with our previous results, we found that the anion frequently plays a key role in determining CO2 solubility in ionic liquids.  相似文献   

13.
Solidification of fluidic ionic liquids into porous materials yields porous ionic networks that combine the unique characteristics of ionic liquids with the common features of polymers and porous materials. This minireview reports the most recent advances in the design of porous ionic liquids. A summary of the synthesis of ordered and disordered porous ionic liquid-based nanoparticles or membranes with or without templates is provided, together with the new concept of room temperature porous ionic liquids. As a versatile platform for functional materials, porous ionic liquids have shown widespread applications in catalysis, adsorption, sensing, actuation, etc. This new research direction towards ionic liquids chemistry is still in its early stages but has great potential.  相似文献   

14.
离子液体萃取脱硫新工艺研究   总被引:36,自引:0,他引:36  
探讨了不同离子液体在不同条件下通过萃取降低汽油中硫含量的可能性.结果表明,较长碳链的DMImBF4离子液体具有很好的深度脱硫性能,并且能够重复使用.同时,研究结果还表明离子液体可以同时降低低碳烯烃的含量,而低碳烯烃的存在可以促进离子液体对汽油中硫的萃取.  相似文献   

15.
Steady-state and time-resolved emission spectroscopy with 25 ps resolution are used to measure equilibrium and dynamic aspects of the solvation of coumarin 153 (C153) in a diverse collection of 21 room-temperature ionic liquids. The ionic liquids studied here include several phosphonium and imidazolium liquids previously reported as well as 12 new ionic liquids that incorporate two homologous series of ammonium and pyrrolidinium cations. Steady-state absorption and emission spectra are used to extract solvation free energies and reorganization energies associated with the S0 <--> S1 transition of C153. These quantities, especially the solvation free energy, vary relatively little in ionic liquids compared to conventional solvents. Some correlation is found between these quantities and the mean separation between ions (or molar volume). Time-resolved anisotropies are used to observe solute rotation. Rotation times measured in ionic liquids correlate with solvent viscosity in much the same way that they do in conventional polar solvents. No special frictional coupling between the C153 and the ionic liquid solvents is indicated by these times. But, in contrast to what is observed in most low-viscosity conventional solvents, rotational correlation functions in ionic liquids are nonexponential. Time-resolved Stokes shift measurements are used to characterize solvation dynamics. The solvation response functions in ionic liquids are also nonexponential and can be reasonably represented by stretched-exponential functions of time. The solvation times observed are correlated with the solvent viscosity, and the much slower solvation in ionic liquids compared to dipolar solvents can be attributed to their much larger viscosities. Solvation times of the majority of ionic liquids studied appear to follow a single correlation with solvent viscosity. Only liquids incorporating the largest phosphonium cation appear to follow a distinctly different correlation.  相似文献   

16.
Short-time dynamics of ionic liquids has been investigated by low-frequency Raman spectroscopy (4 < ω < 100 cm(-1)) within the supercooled liquid range. Raman spectra are reported for ionic liquids with the same anion, bis(trifluoromethylsulfonyl)imide, and different cations: 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-butyl-1-methylpiperidinium, trimethylbutylammonium, and tributylmethylammonium. It is shown that low-frequency Raman spectroscopy provides similar results as optical Kerr effect (OKE) spectroscopy, which has been used to study intermolecular vibrations in ionic liquids. The comparison of ionic liquids containing aromatic and non-aromatic cations identifies the characteristic feature in Raman spectra usually assigned to librational motion of the imidazolium ring. The strength of the fast relaxations (quasi-elastic scattering, QES) and the intermolecular vibrational contribution (boson peak) of ionic liquids with non-aromatic cations are significantly lower than imidazolium ionic liquids. A correlation length assigned to the boson peak vibrations was estimated from the frequency of the maximum of the boson peak and experimental data of sound velocity. The correlation length related to the boson peak (~19 A?) does not change with the length of the alkyl chain in imidazolium cations, in contrast to the position of the first-sharp diffraction peak observed in neutron and X-ray scattering measurements of ionic liquids. The rate of change of the QES intensity in the supercooled liquid range is compared with data of excess entropy, free volume, and mean-squared displacement recently reported for ionic liquids. The temperature dependence of the QES intensity in ionic liquids illustrates relationships between short-time dynamics and long-time structural relaxation that have been proposed for glass-forming liquids.  相似文献   

17.
Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task‐specific ionic liquids. Various task‐specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task‐specific ionic liquids are generally used in techniques such as liquid–liquid extraction, solid‐phase extraction, gas chromatography, high‐performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task‐specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification.  相似文献   

18.
Air and water stable ionic liquids in physical chemistry   总被引:1,自引:0,他引:1  
Ionic liquids are defined today as liquids which solely consist of cations and anions and which by definition must have a melting point of 100 degrees C or below. Originating from electrochemistry in AlCl(3) based liquids an enormous progress was made during the recent 10 years to synthesize ionic liquids that can be handled under ambient conditions, and today about 300 ionic liquids are already commercially available. Whereas the main interest is still focussed on organic and technical chemistry, various aspects of physical chemistry in ionic liquids are discussed now in literature. In this review article we give a short overview on physicochemical aspects of ionic liquids, such as physical properties of ionic liquids, nanoparticles, nanotubes, batteries, spectroscopy, thermodynamics and catalysis of/in ionic liquids. The focus is set on air and water stable ionic liquids as they will presumably dominate various fields of chemistry in future.  相似文献   

19.
Over recent years the Surface Force Apparatus (SFA) has been used to carry out model experiments revealing structural and dynamic properties of ionic liquids confined to thin films. Understanding characteristics such as confinement induced ion layering and lubrication is of primary importance to many applications of ionic liquids, from energy devices to nanoparticle dispersion. This Perspective surveys and compares SFA results from several laboratories as well as simulations and other model experiments. A coherent picture is beginning to emerge of ionic liquids as nano-structured in pores and thin films, and possessing complex dynamic properties. The article covers structure, dynamics, and colloidal forces in confined ionic liquids; ionic liquids are revealed as a class of liquids with unique and useful confinement properties and pertinent future directions of research are highlighted.  相似文献   

20.
A series of novel ionic liquids based on naphthyl-functionalized imidazolium cation have been prepared. Their structure was characterized by NMR. The thermal stabilities of the prepared liquids were studied by thermal gravimetric analysis. The new ionic liquids containing NTf-2 anion display significantly higher thermal stabilities (>400°C). Anion exchange to PF-6, BF-4, and Br decreases the thermal stabilities of such ionic liquids. Fluorescence and UV–Vis absorption spectroscopy were used to study the spectroscopic properties of the ionic liquids. Compared with common ionic liquids, the described ionic liquids provide robust fluorescence properties and remarkably increased UV–Vis absorption. This research may enrich the field of functionalized ionic liquids and provide a platform for extension of ionic liquid applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号