首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一个优化问题的逆问题是这样一类问题,在给定该优化问题的一个可行解时,通过最小化目标函数中参数的改变量(在某个范数下)使得该可行解成为改变参数后的该优化问题的最优解。对于本是NP-难问题的无容量限制设施选址问题,证明了其逆问题仍是NP-难的。研究了使用经典的行生成算法对无容量限制设施选址的逆问题进行计算,并给出了求得逆问题上下界的启发式方法。两种方法分别基于对子问题的线性松弛求解给出上界和利用邻域搜索以及设置迭代循环次数的方式给出下界。数值结果表明线性松弛法得到的上界与最优值差距较小,但求解效率提升不大;而启发式方法得到的下界与最优值差距极小,极大地提高了求解该逆问题的效率。  相似文献   

2.
The paper presents a tight Lagrangian bound and an efficient dual heuristic for the flow interception problem. The proposed Lagrangian relaxation decomposes the problem into two subproblems that are easy to solve. Information from one of the subproblems is used within a dual heuristic to construct feasible solutions and is used to generate valid cuts that strengthen the relaxation. Both the heuristic and the relaxation are integrated into a cutting plane method where the Lagrangian bound is calculated using a subgradient algorithm. In the course of the algorithm, a valid cut is added and integrated efficiently in the second subproblem and is updated whenever the heuristic solution improves. The algorithm is tested on randomly generated test problems with up to 500 vertices, 12,483 paths, and 43 facilities. The algorithm finds a proven optimal solution in more than 75% of the cases, while the feasible solution is on average within 0.06% from the upper bound.  相似文献   

3.
We present cutting plane algorithms for the inverse mixed integer linear programming problem (InvMILP), which is to minimally perturb the objective function of a mixed integer linear program in order to make a given feasible solution optimal.  相似文献   

4.
A parallel algorithm for constrained concave quadratic global minimization   总被引:2,自引:0,他引:2  
The global minimization of large-scale concave quadratic problems over a bounded polyhedral set using a parallel branch and bound approach is considered. The objective function consists of both a concave part (nonlinear variables) and a strictly linear part, which are coupled by the linear constraints. These large-scale problems are characterized by having the number of linear variables much greater than the number of nonlinear variables. A linear underestimating function to the concave part of the objective is easily constructed and minimized over the feasible domain to get both upper and lower bounds on the global minimum function value. At each minor iteration of the algorithm, the feasible domain is divided into subregions and linear underestimating problems over each subregion are solved in parallel. Branch and bound techniques can then be used to eliminate parts of the feasible domain from consideration and improve the upper and lower bounds. It is shown that the algorithm guarantees that a solution is obtained to within any specified tolerance in a finite number of steps. Computational results are presented for problems with 25 and 50 nonlinear variables and up to 400 linear variables. These results were obtained on a four processor CRAY2 using both sequential and parallel implementations of the algorithm. The average parallel solution time was approximately 15 seconds for problems with 400 linear variables and a relative tolerance of 0.001. For a relative tolerance of 0.1, the average computation time appears to increase only linearly with the number of linear variables.  相似文献   

5.
We present a model for the optimization of a global supply that maximizes the after tax profits of a multinational corporation and that includes transfer prices and the allocation of transportation costs as explicit decision variables. The resulting mathematical formulation is a non-convex optimization problem with a linear objective function, a set of linear constraints, and a set of bilinear constraints. We develop a heuristic solution algorithm that applies successive linear programming based on the reformulation and the relaxation of the original problem. Our computational experiments investigate the impact of using different starting points. The algorithm produces feasible solutions with very small gaps between the solutions and their upper bound (UB).  相似文献   

6.
In this paper we consider and present formulations and solution approaches for the capacitated multiple allocation hub location problem. We present a new mixed integer linear programming formulation for the problem. We also construct an efficient heuristic algorithm, using shortest paths. We incorporate the upper bound obtained from this heuristic in a linear-programming-based branch-and-bound solution procedure. We present the results of extensive computational experience with both the heuristic and the exact methods.  相似文献   

7.
In this paper a problem of scheduling a single machine under linear deterioration which aims at minimizing the number of tardy jobs is considered. According to our assumption, processing time of each job is dependent on its starting time based on a linear function where all the jobs have the same deterioration rate. It is proved that the problem is NP-hard; hence a branch and bound procedure and a heuristic algorithm with O(n 2) is proposed where the heuristic one is utilized for obtaining the upper bound of the B&B procedure. Computational results for 1,800 sample problems demonstrate that the B&B method can solve problems with 28 jobs quickly and in some other groups larger problems are also solved. Generally, B&B method can optimally solve 85% of the samples which shows high performance of the proposed method. Also it is shown that the average value of the ratio of optimal solution to the heuristic algorithm result with the objective ??(1 ? Ui) is at most 1.11 which is more efficient in comparison to other proposed algorithms in related studies in the literature.  相似文献   

8.
The global minimization of large-scale partially separable non-convex problems over a bounded polyhedral set using a parallel branch and bound approach is considered. The objective function consists of a separable concave part, an unseparated convex part, and a strictly linear part, which are all coupled by the linear constraints. These large-scale problems are characterized by having the number of linear variables much greater than the number of nonlinear variables. An important special class of problems which can be reduced to this form are the synomial global minimization problems. Such problems often arise in engineering design, and previous computational methods for such problems have been limited to the convex posynomial case. In the current work, a convex underestimating function to the objective function is easily constructed and minimized over the feasible domain to get both upper and lower bounds on the global minimum function value. At each minor iteration of the algorithm, the feasible domain is divided into subregions and convex underestimating problems over each subregion are solved in parallel. Branch and bound techniques can then be used to eliminate parts of the feasible domain from consideration and improve the upper and lower bounds. It is shown that the algorithm guarantees that a solution is obtained to within any specified tolerance in a finite number of steps. Computational results obtained on the four processor Cray 2, both sequentially and in parallel on all four processors, are also presented.  相似文献   

9.
This paper presents a new exact algorithm for the Capacitated Vehicle Routing Problem (CVRP) based on the set partitioning formulation with additional cuts that correspond to capacity and clique inequalities. The exact algorithm uses a bounding procedure that finds a near optimal dual solution of the LP-relaxation of the resulting mathematical formulation by combining three dual ascent heuristics. The first dual heuristic is based on the q-route relaxation of the set partitioning formulation of the CVRP. The second one combines Lagrangean relaxation, pricing and cut generation. The third attempts to close the duality gap left by the first two procedures using a classical pricing and cut generation technique. The final dual solution is used to generate a reduced problem containing only the routes whose reduced costs are smaller than the gap between an upper bound and the lower bound achieved. The resulting problem is solved by an integer programming solver. Computational results over the main instances from the literature show the effectiveness of the proposed algorithm.   相似文献   

10.
本文给出非凸二次约束上二次比式和问题(P)的一个新的加速分枝定界算法.该算法利用线性化技术建立了问题(P)的松弛线性规划问题(RLP),通过对其可行域的细分和求解一系列线性规划问题,不断更新(P)的全局最优值的上下界.为了提高收敛速度,从最优性和可行性两方面,提出了新的删除技术,理论上证明该算法是收敛的,数值试验表明了算法的有效性和可行性.  相似文献   

11.
A non-overlapping domain decomposition algorithm of the Neumann–Neumann type for solving contact problems of elasticity is presented. Using the duality theory of convex programming, the discretized problem turns into a quadratic one with equality and bound constraints. The dual problem is modified by orthogonal projectors to the natural coarse space. The resulting problem is solved by an augmented Lagrangian algorithm. The projectors ensure an optimal convergence rate for the solution of the auxiliary linear problems by the preconditioned conjugate gradient method. Relevant aspects on the numerical linear algebra of these problems are presented, together with an efficient parallel implementation of the method.  相似文献   

12.
We study a single machine scheduling problem with availability constraints and sequence-dependent setup costs, with the aim of minimizing the makespan. To the authors’ knowledge, this problem has not been treated as such in the operations research literature. We derive in this paper a mixed integer programming model to deal with such scheduling problem. Computational tests showed that commercial solvers are capable of solving only small instances of the problem. Therefore, we propose two ways for reducing the execution time, namely a valid inequality that strengthen the linear relaxation and an efficient heuristic procedure that provides a starting feasible solution to the solver. A substantial gain is achieved both in terms of the linear programming relaxation bound and in terms of the time to obtain an integer optimum when we use the enhanced model in conjunction with providing to the solver the solution obtained by the proposed heuristic.  相似文献   

13.
A Single Component Mutation Evolutionary Programming   总被引:1,自引:0,他引:1  
In this paper, a novel evolutionary programming is proposed for solving the upper and lower bound optimization problems as well as the linear constrained optimization problems. There are two characteristics of the algorithm: first, only one component of the current solution is mutated in each iteration; second, it can solve the linear constrained optimization problems directly without converting it into unconstrained problems. By solving two kinds of the optimization problems, the algorithm can not only effectively find optimal or close to optimal solutions but also reduce the number of function evolutions compared with the other heuristic algorithms.  相似文献   

14.
Given an undirected graph with edge costs and both revenues and weights on the vertices, the traveling salesman subtour problem is to find a subtour that includes a depot vertex, satisfies a knapsack constraint on the vertex weights, and that minimizes edge costs minus vertex revenues along the subtour.We propose a decomposition scheme for this problem. It is inspired by the classic side-constrained 1-tree formulation of the traveling salesman problem, and uses stabilized column generation for the solution of the linear programming relaxation. Further, this decomposition procedure is combined with the addition of variable upper bound (VUB) constraints, which improves the linear programming bound. Furthermore, we present a heuristic procedure for finding feasible subtours from solutions to the column generation problems. An extensive experimental analysis of the behavior of the computational scheme is presented.  相似文献   

15.
高岳林  张博 《计算数学》2020,42(2):207-222
本文旨在针对线性比式和规划这一NP-Hard非线性规划问题提出新的全局优化算法.首先,通过引入p个辅助变量把原问题等价的转化为一个非线性规划问题,这个非线性规划问题的目标函数是乘积和的形式并给原问题增加了p个新的非线性约束,再通过构造凸凹包络的技巧对等价问题的目标函数和约束条件进行相应的线性放缩,构成等价问题的一个下界线性松弛规划问题,从而提出了一个求解原问题的分支定界算法,并证明了算法的收敛性.最后,通过数值结果比较表明所提出的算法是可行有效的.  相似文献   

16.
In this study, a new class of proportional parallel flow shop problems with the objective of minimizing the makespan has been addressed. A special case for this problem in which jobs are processed on only one machine as opposed to two or more machines in a flow shop, is the well-known multiple processor problem which is NP-complete. The parallel processor problem is a restricted version of the problems addressed in this paper and hence are NP-complete. We develop and test heuristic and simulation approaches to solve large scale problems, while using exact procedures for smaller problems. The performance of the heuristics relative to the LP lower bound as well as a comparison with the truncated integer programming solution are reported. The performance of the heuristics and the simulation results were encouraging.  相似文献   

17.
An enhanced-interval linear programming (EILP) model and its solution algorithm have been developed that incorporate enhanced-interval uncertainty (e.g., A±, B± and C±) in a linear optimization framework. As a new extension of linear programming, the EILP model has the following advantages. Its solution space is absolutely feasible compared to that of interval linear programming (ILP), which helps to achieve insight into the expected-value-oriented trade-off between system benefits and risks of constraint violations. The degree of uncertainty of its enhanced-interval objective function (EIOF) would be lower than that of ILP model when the solution space is absolutely feasible, and the EIOF’s expected value could be used as a criterion for generating the appropriate alternatives, which help decision-makers obtain non-extreme decisions. Moreover, because it can be decomposed into two submodels, EILP’s computational requirement is lower than that of stochastic and fuzzy LP models. The results of a numeric example further indicated the feasibility and effectiveness of EILP model. In addition, EI nonlinear programming models, hybrid stochastic or fuzzy EILP models as well as risk-based trade-off analysis for EI uncertainty within decision process can be further developed to improve its applicability.  相似文献   

18.
在这篇论文里,有机地把外逼近方法与分枝定界技术结合起来,提出了解带有二次约束非凸二次规划问题的一个分枝缩减方法;给出了原问题的一个新的线性规划松弛,以便确定它在超矩形上全局最优值的一个下界;利用超矩形的一个深度二级剖分方法,以及超矩形的缩减和删除技术,提高算法的收敛速度;证明了在知道原问题可行点的条件下,该算法在有限步里就可以获得原问题的一个全局最优化解,并且用一个例子说明了该算法是有效的.  相似文献   

19.
In radio communications, a set of links that can transmit in parallel with a tolerable interference is called a compatible set. Finding a compatible set with maximum weighted revenue of the parallel transmissions is an important subproblem in wireless network management. For the subproblem, there are two basic approaches to express the signal to interference plus noise ratio (SINR) within integer programming, differing in the number of variables and the quality of the upper bound given by linear relaxations. To our knowledge, there is no systematic study comparing the effectiveness of the two approaches. The contribution of the paper is two-fold. Firstly, we present such a comparison, and, secondly, we introduce matching inequalities improving the upper bounds as compared to the two basic approaches. The matching inequalities are generated within a branch-and-cut algorithm using a minimum odd-cut procedure based on the Gomory-Hu algorithm. The paper presents results of extensive numerical studies illustrating our statements and findings.  相似文献   

20.
The solution of large scale integer linear programming models is generally dependent, in some way, upon the branch and bound technique, which can be quite time consuming. This paper describes a parallel branch and bound algorithm which achieves super linear efficiency in solving integer linear programming models on a multiprocessor computer. The algorithm is used to solve the Haldi and IBM test problems as well as a system design model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号