首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The stability and the possible application of our recently reported SiC heterofullerenes inspire the investigation of their further stabilization through ion encapsulation. The endohedral complexes X@C12Si8, where X=Li+, Na+, K+, Be2+, Mg2+, Ca2+, Al3+, and Ga3+, are probed at the MPWB1K/6-311G? and B3LYP/6-311G* levels of theory. The optimized geometries show the expanding or contracting capability of C12Si8 in order to accommodate metal ion guests. The inclusion energies indicate the stability of the complexes compared to the components. Meanwhile, the calculated binding energies show the stabilization of C12Si8 through the inclusion of Be2+, Mg2+, Al3+, and Ga3+. The host-guest interaction that is probed through NBO atomic charges supports the obtained results. This study refers to “metal ion encapsulation” as a strategy for stabilization of SiC heterofullerenes.  相似文献   

2.
The acyclic tridentate blue luminescent ligand (λex=300 nm, λem=415 nm) quinoline-2-carboxaldehyde 2-pyridylhydrazone, HL, 1, was recognized as a new fluorescent chemosensor for Pd2+. In alkaline methanol complete fluorescent quenching was observed in the presence of 2 equivalents of Pd2+ that was further reflected in the solid phase fluorescence microscopic study.Ligand formed 1:1 complexes with Ni2+, Cu2+, Zn2+, Pd2+ and 1:2 complexes with Co2+, Fe2+ as obtained from Job's plot of continuous variation. The binding constants of different metal complexes (Fe2+, Co2+, Ni2+, Cu2+, Zn2+ and Pd2+) were estimated by fluorescence titrations. The ligand can selectively extract significant amount of Pd2+ from the aqueous mixture of metal ions, and the extraction efficiency was increased from 80% to 95% with increase in the molar ratio of HL, 1, to Pd2+ from 1 to 3. No significant interference was observed up to 2-fold excess addition of Cu2+ and Zn2+ and 100-fold excess addition of Co2+, Fe2+ and Ni2+over the Pd2+ ion concentration (1.0×10−3 M).  相似文献   

3.
The binding of representative alkali, alkaline earth, transition and heavy metal cations by 2‐pyridylmethoxy derivatives (1b, in cone and partial cone conformations) of p‐tert‐butylhexahomotrioxacalix[3]arene was studied. Binding was assessed by extraction studies of the metal picrates from water into dichloromethane and by stability constant measurements in acetonitrile and methanol, using spectrophotometric and potentiometric techniques. Microcalorimetric studies of some selected complexes in acetonitrile were performed, as well as proton NMR titrations. Computational methods (density functional theory calculations) were also employed to complement the NMR data. The results are compared with those obtained with the dihomooxacalix[4]arene 2b and the calix[4]arene 3b derivative analogues. Partial cone‐1b is the best extractant for transition and heavy metal cations. Both conformers of 1b exhibit very high stability constants for soft and intermediate cations Pb2+, Cd2+, Hg2+, Zn2+ and Ni2+, with cone‐1b the strongest binder (ML, log β ≥ 7) and partial cone‐1b the most selective. Both derivatives show a slight preference for Na+. Besides the formation of ML complexes, ML2 and M2L species were also observed. The former complexes were, in general, formed with the transition and heavy metal cations, whereas the latter were obtained with Ag+ and Hg2+ and partial cone‐1b. In most cases, these species were corroborated by the proton NMR and density functional theory studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.

The present study presents a thorough theoretical analysis of the electronic structure and conformational preference of Schiff’s base ligand N,N-bis(2-hydroxybenzilidene)-2,4,6-trimethyl benzene-1,3-diamine (H2L) and its metal complexes with Zn2+, Cu2+ and Ag+ ions. This study aims to investigate the behavior of H2L and the binuclear Zn2+ complex (1) as fluorescent probes for the detection of metal ions (Zn2+, Cu2+ and Ag+) using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The six conformers of the H2L ligand were optimized using the B3LYP/6–311?+??+?G** level of theory, while the L?2-metal complexes were optimized by applying the B3LYP functional with the LANL2DZ/6–311?+??+?G** mixed basis set. The gas-phase and solvated Enol-cis isomer (E-cis) was found to be the most stable species. The absorption spectra of the E-cis isomer and its metal complexes were simulated using B3LYP, CAM-B3LYP, M06-2X and ωB97X functionals with a 6–311?+??+?G** basis set for C, O, N and H atoms and a LANL2DZ basis set for the metal ions (Zn2+, Cu2+ and Ag+). The computational results of the B3LYP functional were in excellent agreement with the experimental results. Hence, it was adopted for performing the emission calculations. The results indicated that metal complex (1) can act as a fluorescent chemosensor for the detection of Ag+ and Cu2+ ions through the mechanism of intermolecular charge transfer (ICT) and as a molecular switch “On–Off-On” via the replacement of Cu2+ by Ag+ ions, as proved experimentally.

  相似文献   

5.
Theoretical design on a new molecular switch and fluorescent chemosensor double functional device of aza‐crown ether (2,2′‐dipyridine‐embedded N‐(9‐anthraceneyl(pyrenyl)methyl)aza‐15‐crown‐5) was explored. The interactions between ligands and a series of alkaline earth metal cations (Mg2+, Ca2+, Sr2+, and Ba2+) were investigated. The fully optimized geometry structures of the free ligands ( L 1, L 2) and their metal cation complexes ( L 1/M2+, L 2/M2+) were calculated with the B3LYP/6‐31G(d) method. The natural bond orbital analysis, which is based on optimized geometric structures, was used to explore the interaction of L 1/M2+, L 2/M2+ molecules. The absorption spectra of L 1, L 2, L 1/M2+, and L 2/M2+, and their excited states were studied by time‐dependent density functional theory. A new type molecular device L 2(2,2′‐dipyridine‐embedded N‐(9‐pyrenyl methyl)aza‐15‐crown‐5) is designed, which not only has the selectivity for Sr2+, and construct allosteric switch, but also has fluorescent sensor performance.  相似文献   

6.
The triplet-triplet (T-T) absorption spectra and the T-T absorption decay kinetics are measured for solutions of 9-anthracenecarboxylic acid (ACA) and its complexes with metal ions (Cd3+ and Ln3+=Y3+, La3+, Ce3+, Eu3+, Gd3+, and Tb3+) in dimethylsulfoxide (DMSO) by the methods of flashlamp and laser pulse photolysis. The rate constants k T of intracomplex quenching of the triplet state are measured for ACA complexes with ions Gd3+, Ce3+, Tb3+, and Eu3+. Larger values of k T in complexes of ACA with paramagnetic ions Ce3+, Tb3+, and Eu3+, which have low-lying energy levels, compared to the values of k T for complexes with other ligands (pyrene-3-sulfonate, pyrene-1,3,6,8-tetrasulfonate, and benzo[ghi]perylene-1,2-dicarboxylate) were explained by the lower energy of the triplet state of ACA (14400 cm?1). For a complex with a paramagnetic ion Gd3+, which has no low-lying energy levels, the value of k T is close to that measured by us earlier for the inner-sphere complex of pyrene-1,3,6,8-tetrasulfonate with the same ion. These results confirm our earlier assumption about the inner-sphere complexing of ACA with Ln3+ ions in DMSO.  相似文献   

7.
The [3 + 2] cycloaddition reaction of C60 with pyridine‐derived hydrazones (acting as dipolar reagents) was successfully conducted resulting in fullerene derivatives 5a , 5b . The compounds were characterized by means of NMR, UV–Vis spectroscopy, and X‐ray crystallography. The electrochemical behavior was also investigated. The fulleropyrazoline 5a exhibits anodically shifted reduction potentials of about 100 mV when compared with those for C60, whereas 5b exhibits cathodic shifts relative to pristine C60. The complexation reaction of 5b with metallic ions (Zn2+, Cd2+, and Fe2+) was achieved. Job and Benesi–Hildebrand analysis confirmed the formation of complexes with a molar ratio of 1:1 and binding constants between 2.26 × 105 and 1.59 × 105 M?1. Electrochemistry of these complexes showed a marked influence of the metal ion on the reduction potentials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This research concerns the analysis of the proton and metal ion binding of amide macrocycles of different structures and sizes by potentiometric, 1H NMR and X‐ray diffraction methods. Protonated ligands exist as a 3D network structures. The ligands form 1:1 complexes with heavy metal ions (Cu2+, Cd2+, Pb2+, Zn2+, and Ni2+) in aqueous solutions and demonstrate the high selectivity towards Cu2+ cations. The pyridine‐2,6‐dicarbamide fragment provides structural rigidity to crown ether, resulting the molecule has an open cavity and faster kinetics of metal complexes formation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Benzothiazole type butadienyl dyes containing a dithia‐15‐crown‐5 ( 2a ) or dithia‐18‐crown‐6 ether ( 2b ) moieties were synthesized. The structures of dyes 2a , b and their complexes with Ag+ and Pb2+ were studied by an X‐ray crystallography. It was found that the conformations of dithiacrown–ether moieties of dyes 2a , b are unfavorable for complex formation and change significantly upon binding of Ag+ or Pb2+. The complexation of 2a , b with Ag+, Cd2+, Pb2+, and Hg2+ in water–acetonitrile mixtures with different contents of water (PW = 0–75%, v/v) was studied by 1H NMR, UV–Vis spectroscopy, and polarography. In anhydrous acetonitrile, the stability constants of 1:1 complexes change in the sequence Cd2+ < Pb2+ ≤ Ag+ << Hg2+ in the case of 2a and in the sequence Cd2+ < Ag+ < Pb2+ << Hg2+ in the case of 2b . As PW increases, the thermodynamic stability of Ag+ complexes increases. The opposite effect is observed for the complexes with Cd2+, Pb2+, and Hg2+. When PW ~ 50%, the stability constants of complexes with Cd2+ and Pb2+ become too small to be measured. The selectivity of ligands 2a , b toward Hg2+ versus Ag+ is very high at any PW values (selectivity coefficients > 104). The complexation of 2a , b with Hg2+ at PW ≤ 50% is accompanied by a substantial hypsochromic effect. This allows dithiacrown‐containing butadienyl dyes to be used as selective optical molecular sensors for heavy metal ions, in particular, in aqueous solutions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The absorption spectra of photochromic centers in CaF2, SrF2, and BaF2 crystals doped by La and Y impurities and thermal decay of the centers in the temperature range 80–600 K are investigated. Under low-temperature x-ray irradiation, ionized photochromic color (PC+) centers are generated in La- and Y-doped CaF2 crystals and in a La-doped SrF2 crystal. It is revealed that, upon heating of the CaF2-LaF3 crystal, PC+ centers are transformed into photochromic color (PC) centers. In the SrF2-YF3 crystal irradiated at room temperature, photochromic color centers are generated as well. All color centers decay at a temperature of approximately 600 K. After irradiation of the BaF2-YF3 crystal at a temperature of 80 K, absorption bands are observed at energies of 2.25 and 3.60 eV, which are related to neither PC centers nor PC+ centers.  相似文献   

11.
We investigate the spectra of the x-ray radiation-induced absorption of SrCl2−Ce crystals over the spectral range 345–830 nm and their temperature transformations in the interval from 77 to 450 K. We found that radiative color centers are characterized by a complex spectrum of induced absorption that contains wide bands of photochromic PC (750, 519, 378 nm) and PC+ (620, 446, 340 nm) centers and quasi-linear bands of Ce2+ centers. The most significant thermal transformations of radiative color centers occur in the vicinity of the thermostimulated luminescence peak of 394 K, at which the holes of the PC+ centers recombine with the electrons of the Ce2+ centers. Ivan Franko L’vov State University, 8, Kirilla i Mefodiya St., L’vov 290005, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 4, pp. 545–547, July–August, 1997.  相似文献   

12.
The coordination geometries, electronic features, metal ion affinities, entropies, and the energetics of Li+, Na+, K+, Be2+, Mg2+, and Ca2+ metal cations with different possible conformations of cysteine complexes were studied. The complexes were optimized using density functional theory (B3LYP) and second order Moller–Plesset Perturbation (MP2) theory methods using 6‐311 + +G** basis set. The interactions of the metal cations at different nucleophilic sites of cysteine conformations were considered after a careful selection among several binding sites. All the metal cations coordinate with cysteine in a tridentate manner and also the most preferred position for the interaction. It is found that, the overall structural parameters of cysteine are not altered by metal ion substitution, but, the metal ion‐binding site has undergone a noticeable change. All the complexes were characterized by an electrostatic interaction between ligand and metal ions that appears slightly more pronounced for lithium and beryllium metal complexes. The metal ion affinity (MIA) and basis set superposition error (BSSE) corrected interaction energy were also computed for all the complexes. The effect of metal cations on the infrared (IR) stretching vibrational modes of amino N? H bond, side chain thiol group S? H bond, hydroxyl O? H bond, and Carbonyl C?O bond in cysteine molecules have also been studied. The nature of the metal ion‐ligand bond and the coordination properties were examined using natural bond order (NBO) at bond critical point (electron density and their Laplacian of electron density) through Atoms in Molecules (AIM) analyses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The dissociation constant of l-acetyl-2-(coumariniminecarboxamide-3-yl) hydrazine (ACCH) has been determined potentiometrically in 0.1 M KC1 and 40% (v/v) ethanol-water mixture. The stepwise stability constants of the formed complexes of Mn2+, Co2+, Ni2+, Cu2+, Zn2+ and UO2 2+ with ACCH have been determined. The stability constants were found to UO2 2+ > Cu2+> Zn2+ > Ni2+ < CO2+ < Mn2+. The effect of temperature on the dissociation of ACCH and the stability of its formed complexes were studied. The corresponding thermodynamic functions were also determined and discussed. The spectral data of ACCH were investigated in pure organic solvents as well as in Britton Robinson buffer solutions of varying pH values. The dissociation constant pKH 1 of ACCH and the overall stability constants logβ of their complexes were determined in 20% (v/v) ethanol-water mixture at 298K.  相似文献   

14.
Stability orderings of 150 stable complexes formed by metal ions (Na+, K+, Ca2+, Mg2+, and Zn2+) and 13 stable thymine tautomers in both solvent and gas phases are obtained, and the optimal binding site for a metal ion in a specific thymine tautomer is identified. Results indicate that the complex with the canonical thymine tautomer (T1) is more stable than those with the rare ones, and the monodentate complex M–T1o4(o2) are their ground‐state form in the solvent phase. The ground‐state thymine complexes bound by Ca2+, Mg2+, or Zn2+ become bidentate M–T3o4lo2,n3, which is derived from a rare thymine tautomer T3o4l, whereas those bound by Na+ and K+ are still monodentate complexes M–T1o4(o2), however, in the gas phase. The differences in stability are discussed in detail from the binding strength of metal ions, relative energy of the corresponding thymine tautomers, and solution effect. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The complexation reactions between murexide and Zn2+, Cd2+ and Pb2+ ions in C2H5OH-H2 mixtures have been investigated spectrophotometrically. Formation constants of the resulting 1:1 complexes were determined and found to vary in the order Pb2+ > Cd2+ > Zn2+, in all binary ethanol-water mixtures used. There is an inverse relationship between the complex formation constants and amount of water in the mixed solvent. A linear relationship was observed between log Kf for complexes and the mole fraction of ethanol.  相似文献   

16.
The present study compared the interactions among Na +, K +, Mg2+ and Ca2+, thymine and its tautomers in the gas and solvent phase, an interaction dependent upon the electronic construction of the tautomers. Three types of cation interaction with thymine and its tautomers were observed. In the first one, the metal cations interacted with a lone pair of nitrogen or oxygen of the tautomers. In the second type, there was an interaction among the cations, nitrogen and oxygen at the same time; the last one was that of cations with the electron density of thymine π-system, where the cations were perpendicular to the ring of thymine. The interaction of metals cation with tautomers was studied in the gas and solvent phases; a comparison was then made between interactions in two phases. The interaction energy for all complexes indicated the stability of complexes, an energy which was higher in Ca2+ and Mg2+ compared with Na+ and K+. Concerning K+ and Na+, the stability of all complexes of tautomers was greater than that of thymine complexes; however, the stability of certain Ca2+ and Mg2+ complexes was lower than the complexes of thymine.  相似文献   

17.
In the context, some lanthanide (Eu3+, Tb3+ and Sm3+) complexes with conjugated carboxylic acids (pyridine-carboxylic acids derivatives) have been synthesized and characterized. The low temperature fluorescent spectra for these complexes have been measured at nitrogen atmosphere (77 K), indicating that the central Ln3+ ions locate in an equivalent coordination environment with low symmetry for most of these lanthanide complexes belonging to dimeric or polymeric structure. Therefore, the electronic dipole transition (supersensitive transition) (5D07F2 for Eu3+, 5D47F6 for Tb3+, 4G5/26H9/2 for Sm3+) and magnetic dipole transition (5D07F1 for Eu3+, 5D47F5 for Tb3+, 4G5/26H5/2 for Sm3+) show the regular change in the corresponding split number of fluorescent spectra, which can be realized to predict the fine structure of lanthanide complexes.  相似文献   

18.
This study investigated the removal of Cd2+, Cu2+, Ni2+, and Pb2+ from aqueous solutions with novel nanoparticle sorbents (Fe3O4, ZnO, and CuO) using a range of experimental approaches, including, pH, competing ions, sorbent masses, contact time, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The images showed that Fe3O4, ZnO, and CuO particles had mean diameters of about 50?nm (spheroid), 25?nm (rod shape), and 75?nm (spheroid), respectively. Tests were performed under batch conditions to determine the adsorption rate and uptake at equilibrium from single and multiple component solutions. The maximum uptake values (sum of four metals) in multiple component solutions were 360.6, 114.5, and 73.0?mg?g?1, for ZnO, CuO, and Fe3O4, respectively. Based on the average metal removal by the three nanoparticles, the following order was determined for single component solutions: Cd2+?>?Pb2+?>?Cu2+?>?Ni2+, while the following order was determined in multiple component solutions: Pb2+?>?Cu2+?>?Cd2+?>?Ni2+. Sorption equilibrium isotherms could be described using the Freundlich model in some cases, whereas other isotherms did not follow this model. Furthermore, a pseudo-second order kinetic model was found to correctly describe the experimental data for all nanoparticles. Scanning electron microscopy, energy dispersive X-ray before and after metal sorption, and soil solution saturation indices showed that the main mechanism of sorption for Cd2+ and Pb2+ was adsorption, whereas both Cu2+ and Ni2+ sorption were due to adsorption and precipitation. These nanoparticles have potential for use as efficient sorbents for the removal of heavy metals from aqueous solutions and ZnO nanoparticles were identified as the most promising sorbent due to their high metal uptake.  相似文献   

19.
In view of previous studies of tetrafluoroborate solutions1, it appeared interesting to continue further investigations on the interactions of fluorocomplexes with different cations, in general, and of the MF6 2- fluoro complexes, in particular. In this communication, the high resolution 19F NMR data are given for the aqueous and water-acetone solutions of silicon, germanium, tin and titanium hexafluorocomplexes, containing paramagnetic (Co2+, Ni2+, Cu2+, Cr3+) and diamagnetic (Be2+, Mg2+, Zn2+, NH4 +) cations.  相似文献   

20.
Summary The electrointercalation of the following hydrated metal ions into 2H-TaS2 crystals was investigated: Na+, K+, Ca2+, Zn2+, Mn2+, Co2+, La3+, Gd3+, Pr3+. We report onin situ dilatometric studies of the reaction and on superconducting properties of these compounds. Paper presented at the ?V International Conference on Ternary and Multinary Compounds?, held in Cagliari, September 14–16, 1982.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号