首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid materials in which reduced graphene oxide (rGO) is decorated with Au nanoparticles (rGO–Au NPs) were obtained by the in situ reduction of GO and AuCl4?(aq) by ascorbic acid. On laser excitation, rGO could be oxidized as a result of the surface plasmon resonance (SPR) excitation in the Au NPs, which generates activated O2 through the transfer of SPR‐excited hot electrons to O2 molecules adsorbed from air. The SPR‐mediated catalytic oxidation of p‐aminothiophenol (PATP) to p,p′‐dimercaptoazobenzene (DMAB) was then employed as a model reaction to probe the effect of rGO as a support for Au NPs on their SPR‐mediated catalytic activities. The increased conversion of PATP to DMAB relative to individual Au NPs indicated that charge‐transfer processes from rGO to Au took place and contributed to improved SPR‐mediated activity. Since the transfer of electrons from Au to adsorbed O2 molecules is the crucial step for PATP oxidation, in addition to the SPR‐excited hot electrons of Au NPs, the transfer of electrons from rGO to Au contributed to increasing the electron density of Au above the Fermi level and thus the Au‐to‐O2 charge‐transfer process.  相似文献   

2.
Thermal behaviour of nickel amine complexes containing SO4 2−, NO3 , Cl and Br as counter ions and ammonia and ethylenediamine as ligands have been investigated using simultaneous TG/DTA coupled with mass spectroscopy (TG/DTA–MS). Evolved gas analyses detected various transient intermediates during thermal decomposition. The nickel ammonium sulphate complex produces NH, N, S, O and N2 species. The nickel ammonium nitrate complex generated fragments like N, N2, NO, O2, N2O, NH2 and NH. The halide complexes produce NH2, NH, N2 and H2 species during decomposition. The ligand ethylenediamine is fragmented as N2/C2H4, NH3 and H2. The residue hexaamminenickel(II) sulphate produces NiO with crystallite size 50 nm. Hexaammine and tris(ethylenediamine)nickel(II) nitrate produce NiO in the range 25.5 nm and 23 nm, respectively. The halide complexes produce nano sized metallic nickel (20 nm) as the residue. Among the complexes studied, the nitrate containing complexes undergo simultaneous oxidation and reduction.  相似文献   

3.
Highly ordered anodic titania nanotube arrays provide a large surface area for electrodepositing nickel nanoparticles which are used as the catalyst for carbon nanotube growth. Pt and Ru nanoparticles, approximately 3 nm in diameter, are uniformly electrodeposited on the as synthesized titania-supported carbon nanotubes (CNTs), constructing a novel catalyst for electrocatalytic oxidation of methanol. An enhanced and stable catalytic activity is obtained due to the uniformly dispersed Pt and Ru nanoparticles, and the large CNT network facilitating the electron transfer between the adsorbed methanol molecules and the catalyst substrate. An oxidation peak current density of 55 mA/cm2 is achieved at a low Pt load of 0.126 mg/cm2 with a Pt/Ru mole ratio of 1:1.  相似文献   

4.
This study presents a sensitive voltammetric determination of terbutaline (TER) on a platform based on carbon nanotubes (CNTs) and europium oxide nanoparticles (Eu2O3NPs) coated glassy carbon electrodes (GCEs). An ultrasonic bath was performed for the preparation of composite material. The material was characterized by energy dispersive X‐ray spectroscopy (EDX), X‐ray diffraction method (XRD) and scanning electron microscopy (SEM). The Eu2O3NPs/CNTs/GCE system was assessed for the oxidation of terbutaline (TER). A broad oxidation peak was appeared at 0.71 V using a bare GCE. However, the voltammetry of TER has been improved at a GCE coated with CNTs and a well‐defined anodic peak exhibited at 0.61 V. Furthermore, the nanoparticles of Eu2O3 and CNTs coated GCE has greatly improved the electrochemical behaviour of TER and a sharp peak was appeared at 0.59 V. Cyclic voltammetry at Eu2O3NPs/CNTs/GCE also reveals a high catalytic effect for the oxidation of TER with an oxidation peak that is distinctly enhanced compared to GCE and CNTs/GCE. Eu2O3 nanoparticles were utilized to enhance the surface area of GCE and then improve the sensitivity of the procedure. The response of TER was linear over a concentration range of 2.0×10?8 M ?9.5×10?6 M with an LOD of 3.7×10?9 M. Square wave voltammetric analysis of tablets by Eu2O3NPs/CNTs/GCE yielded a recovery of 99.2 % with an RSD% of 3.2. The modified electrode (EuO2NPs/CNTs/GCE) provides accuracy and precision to the analysis of samples.  相似文献   

5.
A thermogravimetic kinetic study of uncatalyzed diesel soot oxidation   总被引:1,自引:0,他引:1  
Isothermal and non-isothermal thermogravimetric experiments (TG) with real and synthetic (Printex U) soot were performed at different O2 concentrations (5–22%O2/N2), sample masses (0.5–10 mg), heating (5–20 °C min−1) and flow rates (80–100 mL min−1). The significance of the experimental and calculation uncertainties (i.e. experimental parameter dependencies, calculation method and mass transfer limitations), which are related to TG for the extraction of chemical kinetics, was explored. Finally, an intrinsic kinetic equation for soot oxidation is proposed.  相似文献   

6.
A facile method for one-pot synthesis of highly dispersed palladium nanoparticles on acetylenic ionic liquid polymer functionalized carbon nanotubes (PdNPs-AILP-CNTs) has been developed in this paper. The nanohybrids are prepared by polymerization of acetylenic ionic liquid monomers catalyzed by PdCl2, which is further reduced to PdNPs by NaBH4 on CNTs in one pot and characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The electrocatalytic oxidation of glucose on the PdNPs-AILP-CNT nanohybrids is also investigated by cyclic voltammetry and chronoamperometry. The results show that the PdNPs with a particle size of around 3.5 nm disperse uniformly on CNTs, and PdNPs-AILP-CNT nanohybrids have good electrocatalytic performance for glucose oxidation.  相似文献   

7.
It is obtained that nano-Co3O4-coated carbon prepared by thermal decomposition of Co(NO3)2·6H2O at 300 °C on home-made Albizia procera (Roxb.) leaves derived carbon is an efficient electrocatalyst for electrochemical water oxidation in 0.1 M NaOH (aq.) solution. The loading of nano-Co3O4 on the carbon was changed by varying the amount of precursor of cobalt (100–1000 mg) and using a constant amount of the carbon (200 mg) during thermal decomposition. The prepared samples were characterized by physical techniques, including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), thermo-gravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance spectroscopy (DRS), Brunauer-Emmett-Teller (BET) and X-ray photoelectron spectroscopy (XPS). XRD, TEM, FESEM, and EDS confirmed the formation of uniformly distributed nanoparticles of single-phase Co3O4 on the surface of carbon. The XRD data reveals formation of nano-Co3O4 with average particle sizes in the range of 9–17 nm. The FESEM micrographs demonstrate that Co3O4 nanoparticles, having irregular morphology, are uniformly and densely covered on the surface of supporting carbon.. The prepared samples were immobilized on the filter paper derived carbon electrode (FPCE) to study their electrocatalytic properties toward water oxidation. The cyclic voltammetric studies showed that the nano-Co3O4-C prepared using 400 mg of Co(NO3)2·6H2O (nano-Co3O4-C-400), which possesses meso- and macropores with BET surface area of 192.4 m2/g, reaches a current density of 28 mAcm−2 at 1.5 V and electrochemical water oxidation starting potential of 0.7 V. In this work, it is also shown that the current densities, at 1.5 V, increase by increasing the amount of cobalt oxide in the prepared samples though. The nano-Co3O4-C-400 catalyst shows optimum performance for electrochemical water oxidation in terms of starting water oxidation potential, reasonable amount of Co3O4 and moderate level of current density at 1.5 V.  相似文献   

8.
Three-dimensional (3D) TiO2 hollow structures have attracted much attention due to their unique properties. However, the large bandgap of (3.2 eV) results in the fact that anatase TiO2 photocatalyst can only be excited by UV light, which only accounts for 3–5% of the solar energy. On considering that nobel metallatic nanomaterials can harvest visible light due to surface plasmon resonance (SPR) effect, in this paper, three kinds of Au nanoparticles with different morphologies, namely Au nanospheres (Au-NSs), Au nanorods (Au-NRs) and Au nanopentogons (Au-NPs) were prepared and used as photosensitizers to modified TiO2 hollow nanoboxes (TiO2-HNBs), aiming to explore high efficient visible-light-responsive photocatalyst. The photoreacitivty of Au/TiO2-HNBs was evaluated by photoctalytic oxidation of Rhodamine B (RhB) and NO under visible irradiation (λ > 420 nm). It was found that the visible photoreactivity of TiO2-HNBs was greatly enhanced after modified with Au nanoparticles, and TiO2-HNBs loaded with Au-NRs exhibit the highest visible photocatalytic activity towards both RhB degradation and NO oxidation. Upon visible irradiation, SPR effect induces the production of hot electrons from the Au nanoparticles, which can further transfer to the conduction band of TiO2-HNBs to produce superoxide radicals (O2), resulting in an efficient separation of photo-generated electron-hole pairs. The photoreactivity of Au-NRs/TiO2-HNBs towards RhB degradation almost keeps unchanged even after recycling used for 5 times, indicating that it is promising to be use in practical applications.  相似文献   

9.
纳米结构Au/Fe_2O_3的制备、表征及催化氧化性能   总被引:1,自引:0,他引:1  
分别以纳米和块状氧化铁为载体,通过沉积沉淀法制备了Au/Nano-Fe2O3和Au/Bulk-Fe2O3,并对其进行了表征和催化氧化性能测试。结果表明:对于Au/Nano-Fe2O3,5 nm Au颗粒被尺寸相当的Nano-Fe2O3所包覆,形成新颖的类似核壳结构;对于Au/Bulk-Fe2O3,3 nm Au颗粒高度分散于Bulk-Fe2O3的表面。在1-苯乙醇的氧化反应中,Au/Nano-Fe2O3显示出比Au/Bulk-Fe2O3更好的催化活性。活性的增强主要与小尺寸的Nano-Fe2O3以及Au和Nano-Fe2O3更大的接触界面有关。相比于广泛受到重视的Au的尺寸效应来说,对于Au/Nano-Fe2O3而言,Fe2O3尺寸的影响更大。  相似文献   

10.
分别以纳米和块状氧化铁为载体,通过沉积沉淀法制备了Au/Nano-Fe2O3和Au/Bulk-Fe2O3,并对其进行了表征和催化氧化性能测试。结果表明:对于Au/Nano-Fe2O3,5nmAu颗粒被尺寸相当的Nano-Fe2O3所包覆,形成新颖的类似核壳结构;对于Au/Bulk-Fe2O3,3nmAu颗粒高度分散于Bulk-Fe2O3的表面。在1-苯乙醇的氧化反应中,Au/Nano-Fe2O3显示出比Au/Bulk-Fe2O3更好的催化活性。活性的增强主要与小尺寸的Nano-Fe2O3以及Au和Nano-Fe2O3更大的接触界面有关。相比于广泛受到重视的Au的尺寸效应来说,对于Au/Nano-Fe2O3而言,Fe2O3尺寸的影响更大。  相似文献   

11.
Carbonizate as a model soot has been submitted to oxidation using Al2O3, Cr2O3, Ni2O3 and Fe2O3 as catalysts in the temperature range from RT up to 1000°C. The results obtained indicate that Fe2O3 is the most active catalyst in soot oxidation. However, all the catalysts examined are active in transformation of carbonizate components. It has been shown that DTA and TG methods can be used as fast methods testing the carbonizate oxidation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
《Comptes Rendus Chimie》2014,17(7-8):672-680
Experimental studies on diesel soot oxidation under a wide range of conditions relevant for modern diesel engine exhaust and continuously regenerating particle trap were performed. Hence, reactivity tests were carried out in a fixed bed reactor for various temperatures and different concentrations of oxygen, NO2 and water (300–600 °C, 0–10% O2, 0–600 ppm NO2, 0–10% H2O). The soot oxidation rate was determined by measuring the concentration of CO and CO2 product gases. The parametric study shows that the overall oxidation process can be described by three parallel reactions: a direct C–NO2 reaction, a direct C–O2 reaction and a cooperative C–NO2–O2 reaction. C–NO2 and C–NO2–O2 are the main reactions for soot oxidation between 300 and 450 °C. Water vapour acts as a catalyst on the direct C–NO2 reaction. This catalytic effect decreases with the increase of temperature until 450 °C. Above 450 °C, the direct C–O2 reaction contributes to the global soot oxidation rate. Water vapour has also a catalytic effect on the direct C–O2 reaction between 450 °C and 600 °C. Above 600 °C, the direct C–O2 reaction is the only main reaction for soot oxidation. Taking into account the established reaction mechanism, a one-dimensional model of soot oxidation was proposed. The roles of NO2, O2 and H2O were considered and the kinetic constants were obtained. The suggested kinetic model may be useful for simulating the behaviour of a diesel particulate filter system during the regeneration process.  相似文献   

13.
The palladium and gold precursors were dissolved in dispersive and continuous phase of ionic liquid microemulsion (H2O/Triton X-100 (TX-100)/1-butyl-3-methylimidazolium hexafluorophosphate), respectively. [PdCl6]2? ions were reduced in situ by TX-100 in dispersive phase (H2O) to prepare Pd nanoparticles (NPs) and then [AuCl4]? crossed through the interface film and reacted with the as-prepared Pd NPs to form Pd4Au NPs. The as-prepared Pd4Au NPs were characterized by transmission electronic microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and ultraviolet–visible spectroscopy. The as-prepared Pd4Au NPs suspension and carbon nanotubes (CNTs) suspension were vigorously stirred to prepare the electrocatalyst supported on the CNTs with a total metal loading of 20?wt.% (denoted by Pd4Au/CNTs). Cyclic voltammetry and chronoamperometry tests show that the Pd4Au/CNTs are very promising for the oxidation of ethanol in alkaline medium. The result can be attributed to the synergistic effect between Pd and Au during the catalytic process.  相似文献   

14.
近年来,碳纳米管(CNTs)[1]作为新型催化剂载体方面的研究[2~11]受到了广泛关注。由于碳纳米管具有纳米级卷曲的表面,与石墨烯相比其表面π键发生变化,从而导致新的电子结构[12],因此碳纳米管负载的催化剂在涉及电子传输过程的催化过程中具有特别的吸引力。燃料电池电极催化剂就是其中典型的一类[13~15]。已有研究者选用碳纳米管作为载体,将Pt[16~19]、PtRu[20,21]等具有催化活性的贵金属或其合金负载到碳纳米管上,展现出了很好的电催化氧化活性。然而,到目前为止,制备用于燃料电池的具有均匀尺寸和分散性的负载型纳米催化剂仍然是一项…  相似文献   

15.
Mesoporous TiO2 nanocrystalline film was formed on fluorine‐doped tin oxide electrode (TiO2/FTO) and gold nanoparticles (NPs) of different sizes were loaded onto the surface with the loading amount kept constant (Au/TiO2/FTO). Visible‐light irradiation (λ>430 nm) of the Au/TiO2/FTO photoanode in a photoelectrochemical cell with the structure of photoanode|0.1 m NaClO4 aqueous solution|Ag/AgCl (reference electrode)|glassy carbon (cathode) leads to the oxidation of water to oxygen (O2). We show that the visible‐light activity of the Au/TiO2/FTO anode increases with a decrease in Au particle size (d) at 2.9≤d≤11.9 nm due to the enhancement of the charge separation and increasing photoelectrocatalytic activity.  相似文献   

16.
Magnetic Co3O4 nanoparticles were prepared by using microporous regenerated cellulose films as sacrificial scaffolds. The cellulose macromolecules and the porous structure of the films made them used as spatially confined reacting sites where Co(OH)2 nanoparticles could be synthesized in situ. When the cellulose matrix was removed by sintering at 500 °C, Co3O4 nanoparticles were obtained. XRD and XPS indicated that the prepared nanoparticles were pure Co3O4 without any impurity. TEM and SEM images revealed that the particle size of the nanoparticles was smaller than 100 nm. The nanoparticles had weak ferromagnetic properties at 25 °C. Furthermore, the pronounced quantum confinement effects of the synthesized nanoparticles have been observed, the optical bandgap energies determined were about 1.92 ~ 2.12 and 2.74 ~ 2.76 eV for O2− → Co3+ and O2− → Co2+ charge-transfer processes, respectively. Furthermore, the resulted Co3O4 nanoparticles behaved stable electrochemical performance with promising applications in the electrode for lithium ion battery.  相似文献   

17.
MgNb2O6 nanocrystalline powders have been synthesized at a low temperature by improved citrate sol–gel method in this paper. The high quality solution of Nb5+ was prepared using Nb2O5 as the starting material. The crystal structure and microstructure of MgNb2O6 powders were characterized by XRD and SEM techniques, and the effects of preparation craft including pH value and the proportion of citric acid to the niobium ions on the crystal structure and microstructure of powders were also investigated. XRD and TG/DTA results show that the single phase of MgNb2O6 for synthesized powders can be obtained by calcining the precursor at 700 °C. SEM results indicate that the average particle size of MgNb2O6 exhibits a significantly dependence on the pH values and the proportion of citric acid to the niobium ions, where it was found that particle size of a 20 nm can be obtained for the MgNb2O6 powders by sol–gel process.  相似文献   

18.
The 3-D composite electrodes consisting of Pt nanoparticles supported on nitrogen-doped carbon nanotubes (CNx) grown directly on carbon paper were successfully prepared. The effect of the nitrogen atom incorporation in carbon nanotubes (CNTs) on the Pt nanoparticle dispersion and catalytic activities for the oxygen reduction reaction has been investigated. Compared to regular CNTs, highly dispersed Pt nanoparticles with smaller size (2–3 nm) and higher electrochemical Pt surface area as well as higher fuel cell performance were obtained for CNx.  相似文献   

19.
Fe3O4 powders, whose average particle sizes were 400 nm, 100 nm, and 10 nm in diameter, were prepared in order to investigate the effect of particle size on their electrochemical activity. X-ray diffraction and electron microscopy measurements confirmed that all the prepared samples were identified as inverse-spinel type Fe3O4, whose crystallite/particle sizes were between 400 nm and 10 nm. We found that the electrochemical activity of Fe3O4 in a lithium salt electrolyte was enhanced with a decrease in the particle size from 400 nm to 10 nm. The 10 nm nanocrystalline Fe3O4 powder demonstrated the high discharge capacities of about 130 and 160 mAh g−1 with a satisfactory capacity retention as the active cathode material of Li and Na batteries, respectively.  相似文献   

20.
Gold catalysts with loadings ranging from 0.5 to 7.0 wt% on a ZnO/Al2O3 support were prepared by the deposition–precipitation method (Au/ZnO/Al2O3) with ammonium bicarbonate as the precipitation agent and were evaluated for performance in CO oxidation. These catalysts were characterized by inductively coupled plasma-atom emission spectrometry, temperature programmed reduction, and scanning transmission electron microscopy. The catalytic activity for CO oxidation was measured using a flow reactor under atmospheric pressure. Catalytic activity was found to be strongly dependent on the reduction property of oxygen adsorbed on the gold surface, which related to gold particle size. Higher catalytic activity was found when the gold particles had an average diameter of 3–5 nm; in this range, gold catalysts were more active than the Pt/ZnO/Al2O3 catalyst in CO oxidation. Au/ZnO/Al2O3 catalyst with small amount of ZnO is more active than Au/Al2O3 catalyst due to higher dispersion of gold particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号