首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of LnCl_3 with K _9H_7(C_9H_7=indenyl)andK_2C_8H_8(C_8H_8=cyclooctatetraene)in tetrahydrofuran(THF)give thecorresponding complexes(η~5-C_9H_7)Ln(η~8-C_8H_8)·2THF.The synthesis of(η~5-C_9H_7)Ln(η~8-C_8H_8)·2THF(Ln=Pr,Nd)and crystal structure of(η~5-C_9H_7)Pr(η~8-C_8H_8)·2THF are described.  相似文献   

2.
Reaction of YbI2 with two equivalents of cyclopentylindenyl lithium (C5H9C9H6Li) affords ytterbium(II) substituted indenyl complex (C5H9C9H6)2Yb(THF)2 (1) which shows high activity to ring-opening polymerization (ROP) of lactones. The reaction between YbI2 and cyclopentylcyclopentadienyl sodium (C5H9C5H4Na) gives complex [(C5H9C5H4)2Yb(THF)]2O2 (2) in the presence of a trace amount of O2, the molecular structure of which comprises two (C5H9C5H4)2Yb(THF) bridged by an asymmetric O2 unit. The O2 unit and ytterbium atoms define a plane that contains a Ci symmetry center.  相似文献   

3.
四甲基双硅桥联环戊二烯基钠与无水三氯化稀土在THF溶剂中反应合成了标题配合物Me4Si2(C5H4)2LnCl[Ln:3Nd,4Sm,5Gd,6Y]和配合物Me4Si2(C5H4):Ln(C5H5)(THF)n[Ln:1La,n=1;2Pr,n=0].通过元素分析、1HNMR、13CNMR和MS确证了配合物的结构,在THF溶液中重结晶获得配合物4的单晶,x射线衍射证明晶体结构为二聚体,4为单斜晶系,空间群为P21/c,晶体学数据a=1.2982(3)nm,b=1.2269(3)nm,c=1.3681(2)nm,β=96.79(2)°,V=2.162(1)nm3,Z=2,Dx=1.53g/cm3,偏差因子R=0.068.  相似文献   

4.
The diphenylbutadiene-bridged gadolinium complex [GdCl2(THF)3]2(μ-Ph2C4H4) · 3THF (1) has been obtained by the reaction of Gd(III) chloride with diphenylbutadienepotassium. The molecular structure of 1 was determined by X-ray diffraction. The complex 1 has a binuclear structure in which a bridging diphenylbutadiene ligand is η4-bonded to the Gd atoms connecting two GdCl2(THF)3 units. Both Gd atoms have a distorted octahedral environment. At the Gd atom the two Cl atoms are in trans positions and the four other coordination sites are occupied by the three O atoms of THF molecules and the η4-bonded C4H4 fragment of a diphenylbutadiene ligand. In the two η4-bonded GdC4H4 fragments one of the Gd-C η4-distances is significantly elongated (2.86(3) and 2.97(3) Å) compared with other three (2.65(3)–2.69(3) and 2.67(3)—2.77(3) Å). The magnetic moment of Gd, equal to 8.1 BM, is typical for Gd3+ compounds that is evidence for a formal charge of DPBD ligand of −2 in complex 1. However, the expected distribution of the C-C bond of the diene fragment as long—short—long is not realized.  相似文献   

5.
The complex (di-η5-C5H4CH2CH2CH2C5H4)Ti(η1-C5H5)2 (I) can be obtained unambiguously starting from the corresponding bridged titanocene dichloride. Attempts to synthesize the isomeric compounds (η5-C5H5)2 Ti(di-η1-C5H4-CH2CH2CH2C5H4) (I′) by the action of a convenient bridged dianion on (C5H5)2 TiCl2 afford several compounds, one of them is the complex I. The possibility of interconversion of these complexes by a fluctional process is discussed.  相似文献   

6.
The ruthenium(II) complex Ru(CO)2(NH2(NH2CH2C6H5)2(Si(C6H5)(CH3)2)I has been prepared by the reaction of Ru(CO)4(Si(C6H5)(CH3)2)I with benzylamine. Two-dimensional homonuclear 1H NMR experiments examine the scalar coupling of the enantiotopic amino and methylene protons of the benzylamine ligand. X-ray analysis of Ru(CO)2(NH2CH2C6H5)2(Si(C6H5)(CH3)2)I·1/3C5H12 (triclinic; P ; a = 14.266(4), b = 15.748(5), c = 20.082(6) Å; = 94.38(3), β = 96.30(2), γ = 101.52(2)°) indicates three crystallographically unique complexes form a clathrate with a pentane guest.  相似文献   

7.
The reaction between RMgCl (two equivalents) and 1,2-W2Cl2(NMe2)4 in hydrocarbon solvents affords the compounds W2R2(NMe2)4, where R = allyl and 1− and 2-methyl-allyl. In the solid state the molecular structure of W2(C3H5)2(NMe2)4 has C2 symmetry with bridging allyl ligands and terminal W---NMe2 ligands. The W---W distance 2.480(1) Å and the C---C distances, 1.47(1) Å, imply an extensive mixing of the allyl π-MOs with the WW π-MOs, and this is supported by an MO calculation on the molecule W2(C3H5)2(NH2)4 employing the method of Fenske and Hall. The most notable interaction is the ability of the (WW)6+ centre to donate to the allyl π*-MO (π3). This interaction is largely responsible for the long W---W distance, as well as the long C---C distances, in the allyl ligand. The structure of the 2-methyl-allyl derivative W2(C4H7)2(NMe2)4 in the solid state reveals a gauche-W2C2N4 core with W---W = 2.286(1) Å and W---C = 2.18(1) Å, typical of WW and W---C triple and single bonds, respectively. In solution (toluene-d8) 1H and 13C NMR spectra over a temperature range −80°C to +60°C indicate that both anti- and gauche- W2C2N4 rotamers are present for the 2-methyl-allyl derivative. In addition, there is a facile fluxional process that equilibrates both ends of the 2-methyl-allyl ligand on the NMR time-scale. This process leads to a coalescence at 100°C and is believed to take place via an η3-bound intermediate. The 1-methyl-allyl derivative also binds in an η1 fashion in solution and temperature-dependent rotations about the W---N, W---C and C=C bonds are frozen out at low temperatures. The spectra of the allyl compound W2(C3H5)2(NMe2)4 revealed the presence of two isomers in solution—one of which can be readily reconciled with the presence of the bridging isomer found in the solid state while the other is proposed to be W23-C3H5)2(NMe2)4. The compound W2R2(NMe2)4 where R = 2,4-dimethyl- pentadiene was similarly prepared and displayed dynamic NMR behaviour explainable in terms of facile η1 = η3 interconversions.  相似文献   

8.
The effects of cyclopentadienyl ring size on the geometry of bimetallic organosamarium complexes have been studied by comparing the X-ray crystal structure of [(C5H4Me)2(THF)Sm(μ-Cl)]2, prepared from KC5H4Me and SmCl3 in THF, with C5Me5 analogs. The complex crystallizes from THF at −30°C in space group Pbcn with a = 20.312(5), b = 9.626(2), c = 16.225(3) Å, V = 3172.5(12) Å3 and Dcalc = 1.74 g cm−3 for Z = 4. Least-squares refinement of the model based on 1759 reflections [|Fo| > 2.0σ(|Fo|)] converged to a final RF = 5.0%. The complex adopts a geometry which has a molecular two-fold rotation axis perpendicular to the Sm2Cl2 plane and a crystallographic inversion center. Hence, both methyl groups of each (C5H4Me)2Sm unit are located on the side opposite of the THF ligands, which are trans to each other, and the four C5H4Me ring centroids define a square plane. The Sm---Cl distances are 2.759(3) and 2.819(3) Å.  相似文献   

9.
Reaction of optically active ketone complexes (+)-(R)-[(η5-C5H5)Re(NO)-(PPh3)(η1-O=C(R)(CH3)]+ BF4 (R = CH2CH3, CH(CH3)2m C(CH3)3, C6H5) with K(s-C4H9)3BH gives alkoxide complexes (+)-(RS)-(η5-C5H5)Re(NO)(PPh3)-(OCH(R)CH3) (73–90%) in 80–98% de. The alkoxide ligand is then converted to Mosher esters (93–99%) of 79–98% de.  相似文献   

10.
The synthesis of the potential bridging ligand (C6H5)2PCH2CH2Si(CH3)2C5H4 (3) is described. The ferrocene (6 derived from 3 has been found to form macrocyclic complexes with metal fragments NiCl2, NiBr2, and Co2(CO)6. Although monomeric, bimetallic products might have been expected based upon the reduced steric demands of ligand 3 relative to an analogous ligand, (C6H5)2PCH2Si(CH)3)2C5H4 (1), it appears that the increased flexibility in 3 is the overriding factor leading to a preference for inter- rather than intramolecular coordination of the second phosphine function in 6.  相似文献   

11.
The reaction of [(C6H6)RuCl2]2 with 7,8-benzoquinoline and 8-hydroxyquinoline in methanol were performed. The obtained complexes have been studied by IR, UV–VIS, 1H and 13C NMR spectroscopy and X-ray crystallography. In the reaction with 8-hydroxyquinoline the arene ruthenium(II) complex oxidized to Ru(III). The electronic spectra of the obtained compounds have been calculated using the TDDFT method. Magnetic properties of [Ru(C9H6NO)3] · CH3OH complex suggest the antiferromagnetic coupling of the ruthenium centers in the crystal lattice. EPR spectrum of [Ru(C9H6NO)3] · CH3OH compound indicates single isotropic line only characteristic for Ru3+ with spin equal to 1/2.  相似文献   

12.
We study here the reactions between C60 and planar C5H5+ cations that lead to the formation of [C60C5H5]+ adduct cations in the chemical ionization source of the mass spectrometer. The structures, stabilities and charge locations of some possible isomers of [C60C5H5]+: σ-adduct, π-complex, [1,4]- and [l,2]-addition cations, are studied by AM1 semiempirical molecular orbital calculations. We find that the most stable is the σ-addition cation. Another interesting and stable structure is the π-complex cation which is bonded by the electrostatic interaction at the inter-ring distance of 1.589 Å with the C5v symmetry. The C5H5+ cyclopentadienium cation seems to be an “inverted umbrella” sitting on a five-membered ring of the C60 cage.  相似文献   

13.
Reduction of (C5H5)2TiCl2 with Zn in presence of benzyl cyanide gives the (μ-alkyl-ideneamido)titanocene complex [(C5H5)2TiCl]2[μ-{N=C(CH2C6H5)---C(CH2C6H5)=N}] with C---C bond formation between two benzyl cyanide molecules.

X-ray structure investigation indicates a symmetrical structure. The C=N distances are smaller than usual, the Ti---N distances are very short, and the Ti---N---C angle differs only a little from 180°, which infers a heteroallene structure of the complex.  相似文献   


14.
The singlet-triplet separations for the edge-sharing bioctahedral (ESBO) complex W2(μ-H)(μ-Cl)(Cl4(μ-dppm)2 · (THF)3 (II) has been studied by 31P NMR spectroscopy. The structural characterization of [W2(μ-H)2(μ-O2CC6H5)2Cl2(P(C6H5)3)2] (I) by single-crystal X-ray crystallography has allowed the comparison of the energy of the HOMOLUMO separation determined using the Fenske-Hall method for a series of ESBO complexes with two hydride bridging atoms, two chloride bridging atoms and the mixed case with a chloride and hydride bridging atom. The complex representing the mixed case, [W2(μ-H)(μ-Cl)Cl4(μ-dppm)2 · (THF)3] (II), has been synthesized and the value of −2J determined from variable-temperature 31P NMR spectroscopy.  相似文献   

15.
Reaction of ansa-cyclopentadienyl pyrrolyl ligand (C5H5)CH2(2-C4H3NH) (2) with Ti(NMe2)4 affords bis(dimethylamido)titanium complex [(η5-C5H4)CH2(2-C4H3N)]Ti(NMe2)2 (3) via amine elimination. A cyclopentadiene ligand with two pendant pyrrolyl arms, a mixture of 1,3- and 1,4-{CH2(2-C4H3NH)}2C5H4 (4), undergoes an analogous reaction with Ti(NMe2)4 to give [1,3-{CH2(2-C4H3N)}25-C5H3)]Ti(NMe2) (5). Molecular structures of 3 and 5 have been determined by single crystal X-ray diffraction studies.  相似文献   

16.
Thermal displacement of coordinated nitriles RCN (R = CH3, C2H5 or n-C3H7) in [C5H5Fe(L2)(NCR)]X complexes (L2 = P(OCH3)3)2, (P(OC6H5)3)2 or (C6H5)2PC2H4P(C6H5)2 (DPPE)) by E(CH3)2 affords high yields of [C5H5Fe(L2)(E(CH3)2)]X compounds (E = S, Se and Te; X = BF4 or PF6). Spectroscopic data and ligand displacement reactions are presented and discussed together with related observations on [C5H5Fe(CO)2(E(CH3)2)]BF4 compounds. The molecular structure of [C5H5Fe(P(OCH3)3)2(S(CH3)2)]PF6 was determined by a single-crystal X-ray diffraction study: monoclinic, space group P21/n-C52h (No. 14) with a = 8.4064(12), b = 11.183(2), c = 50.726(8) Å, β = 90.672(13)° and Z = 8 molecules per unit cell. The coordination sphere of the iron atom is pseudo-tetrahedral with an Fe---S bond distance of 2.238 Å.  相似文献   

17.
Reactions of the lithium salts of 3-substituted indenes 1, 2 with ZrCl4(THF)2 gave two series of nonbridged bis(1-substituted)indenyl zirconocene dichloride complexes. Fractional recrystallization from THF–petroleum ether furnished the pure racemic and mesomeric isomers of [(η5-C9H6-1-C(R1)(R2)---o-C6H4---OCH3)2ZrCl2nTHF (R1=R2=CH3, n=1, rac-1a and meso-1b; R1=CH3, R2=C2H5; n=0.5 or 0, rac-2a and meso-2b), respectively. Complex 1a was further characterized by X-ray diffraction to have a C2 symmetrically racemic structure, where the six-member rings of the indenyl parts are oriented laterally and two o-CH3O---C6H4---C(CH3)2--- substituents are oriented to the open side of the metallocene (Ind: bis-lateral, anti; Substituent: bis-central, syn). The four zirconocene complexes are highly symmetrical in solution as characterized by room temperature 1H-NMR, however 1H–1H NOESY of meso-1b shows that some of the NOE interactions arise from the two separated indenyl parts of the same molecule, which can only be well explained by taking into account the torsion isomers in solution.  相似文献   

18.
A series of heterodimetallic complexes of general formula (C5R5)M(μ-CO)3RuC5Me5 (M = Cr, Mo, W; R = Me, Et) has been prepared in good yields by the reaction of [C5R5M(CO)3] with [C5Me5Ru(CH3CN)3]+. (C5Me4Et)W(μ-CO)3Ru(C5Me5) was characterized by a crystal structure determination. The W---Ru bond length of 2.41 Å is consistent with the formulation of a metal-metal triple bond, while the unsymmetrical bonding mode of the three bridging carbonyl groups reflects the inherent non-equivalence of the two different C5R5M-units. Using [CpRu(CH3CN)3]+ or [CpRu(CO)2(CH3CN)]+ as the cationic precursor leads to the formation of dimetallic species (C5R5)M(CO)5RuC5H5 with both bridging and terminal carbonyl groups.  相似文献   

19.
Treatment of 1,2-trans-C5H8(PCl2)2 with 1,2-C2H4(NHPr-i)2 gave the C2-symmetric perhydro-1,6,2,5-diazaphosphocine C5H8{P(Cl)N(Pr-i)CH2}2-cyclo, which produced dissymmetric C5H8(PPh2){P[N(Pr-i)CH2]2-cyclo} on further reaction with PhMgBr. Cleavage of the P---N bonds with gaseous HCl afforded C5H8(PPh2)(PCl2), which was converted to C5H8(PPh2){P(OPh)2}2 by reaction with phenol. All chiral P,P derivatives were obtained as racemates as well as resolved (1R,2R)- and (1S,2S)-enantiomers.  相似文献   

20.
The reactions of the half-sandwich molybdenum(III) complexes CpMo(η4-C4H4R2)(CH3)2, where Cp=η5-C5H5 and R=H or CH3, with equimolar amounts of B(C6F5)3 have been investigated in toluene. EPR monitoring shows the formation of an addition product which does not readily react with Lewis bases such as ethylene, pyridine, or PMe3. The analysis of the EPR properties and the X-ray structure of a decomposition product obtained from dichloromethane, [CpMo(η4-C4H6)(μ-Cl)(μ-CH2)(O)MoCp][CH3B(C6F5)3], indicate that the borane attack has occurred at the methyl position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号