首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
For the separation of peptides with gradient-elution liquid chromatography a poly(butyl methacrylate-co-ethylene dimethacrylate) (BMA) monolithic capillary column was prepared and tested. The conditional peak capacity was used as a metric for the performance of this column, which was compared with a capillary column packed with C18-modified silica particles. The retention of the peptides was found to be smaller on the BMA column than on the particulate C18 column. To obtain the same retention in isocratic elution an approximately 15% (v/v) lower acetonitrile concentration had to be used in the mobile phase. The retention window in gradient elution was correspondingly smaller with the BMA column. The relation between peak width and retention under gradient conditions was studied in detail. It was found that in shallow gradients, with gradient times of 30min and more, the peak widths of the least retained compounds are strongly increased with the BMA column. This was attributed to the fact that these compounds migrate and elute with an unfavorable high retention factor. More retained compounds are eluted later in the gradient, but with a lower effective retention factor. With shallow gradients the peak capacity of the BMA column ( approximately 90) was clearly lower than that of a conventional packed column ( approximately 150). On the other hand, with steep gradients, when components elute with a low effective retention factor, the performance of the BMA column is relatively good. With a gradient time of 15min similar peak widths and thus similar peak capacities ( approximately 75) were found for the packed and the monolithic column. Two strategies were investigated to obtain higher peak capacities with methacrylate monolithic columns. The use of lauryl methacrylate (LMA) instead of butyl methacrylate (BMA) gave an increase in retention and narrower peaks for early eluting peptides. The peak capacity of the LMA column was approximately 125 in a 60min gradient. Another approach was to use a longer BMA column which resulted in a peak capacity of approximately 135 could be obtained in 60min.  相似文献   

2.
An investigation into the preparation of monolithic separation media utilising a cyanine dye sensitiser/triphenylbutylborate/N-methoxy-4-phenylpyridinium tetrafluoroborate initiating system activated by 660 nm light emitting diodes is reported. The work demonstrates multiple uses of red-light initiated polymerisation in the preparation of monolithic stationary phases within polyimide and polyimide coated channels and the modification of monolithic materials with molecules which absorb strongly in the UV region. This initiator complex was used to synthesise poly(butyl methacrylate-co-ethylene dimethacrylate) and poly(methyl methacrylate-co-ethylene dimethacrylate) monolithic stationary phases in polyimide coated fused silica capillaries of varying internal diameters, as well as within polyimide micro-fluidic chips. The repeatability of the preparation procedure and resultant monolithic structure was demonstrated with a batch of poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths in 100 μm i.d. polyimide coated fused silica capillary, which were applied to the separation of a model protein mixture (ribonuclease A, cytochrome C, myoglobin and ovalbumin). Taking an average from 12 chromatograms originating from each batch, the maximum relative standard deviation of the retention factor (k) for the protein separations was recorded as 0.53%, the maximum variance for the selectivity factor (α) was 0.40% while the maximum relative standard deviation in peak resolution was 8.72%. All maxima were recorded for the Ribonuclease A/Cytochrome C peaks. Scanning electron microscopy confirmed the success of experiments in which poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths were prepared using the same initiation approach in capillary and micro-fluidic chips, respectively. The initiating system was also applied to the photo-initiated grafting of a chromophoric monomer onto poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths within poly(tetrafluoroethylene) coated fused silica capillaries.  相似文献   

3.
A simple porogen containing only DMF and aqueous buffer was used for synthesis of monolithic stationary media for CEC). Butyl methacrylate (BMA)‐based capillary monoliths were obtained using proposed porogen together with acrylic/methacrylic cross‐linking agents with different alkyl chain lengths. For this purpose, ethylene glycol dimethacrylate, butanediol dimethacrylate and hexanediol diacrylate (HDDA) were used. The monoliths with better electrochromatographic separation performance were obtained when the acrylic cross‐linking agent with the longest alkyl chain length (i.e. HDDA) was used with the proposed porogen. The electrochromatographic separation of alkylbenzenes, phenols and benzoic acids were sucessfully performed in CEC particularly using poly(BMA‐co‐HDDA) monolithic stationary phase with the column efficiency up to 270 000 plates/m.  相似文献   

4.
The porous structure as well as the polarity of methacrylate ester-based monolithic stationary phases has been optimized to achieve the separation of various peptides originating from enzymatic digestion. The porous structure, determined by the size of both pores and microglobules, was varied through changes in the composition of porogenic solvents in the polymerization mixture, while the polarity was controlled through the incorporation of butyl, lauryl, or octadecyl methacrylate in the polymer backbone. Both the morphology and the chemistry of the monoliths had a significant effect on the retention and efficiency of the capillary columns. The best resolution of peptidic fragments obtained by digestion of Cytochrome c with trypsin in solution was obtained in a gradient LC-MS mode using a monolithic capillary column of poly(lauryl methacrylate-co-ethylene dimethacrylate) featuring small pores and small microglobules. Raising the temperature from 25 to 60 degrees C enabled separations to be carried out at 40% higher flow rates. Separations carried out at 60 degrees C with a steeper gradient proceeded without loss of performance in half the time required for a comparable separation at room temperature. Our preparation technique affords monolithic columns with excellent column-to-column and run-to-run repeatability of retention times and pressure drops.  相似文献   

5.
We characterized thermally polymerized organo-silica hybrid monolithic capillaries to test their applicability in the gradient elution of peptides. We have used a single-pot approach utilizing 3-(methacryloyloxy)propyltrimethoxysilane (MPTMS), ethylene dimethacrylate (EDMA), and n-octadecyl methacrylate (ODM) as functional monomers. The organo-silica monolith containing MPTMS and EDMA was compared with the stationary phase prepared by adding ODM to the original polymerization mixture. Column prepared using a three-monomer system provided a lower accessible volume of flow-through pores, a higher proportion of mesopores, and higher efficiency. We utilized isocratic and gradient elution data to predict peak widths in gradient elution. Both protocols provided comparable results and can be used for peptide peak width prediction. However, applying gradient elution data for peak width prediction seems simpler. Finally, we tested the effect of gradient time on achievable peak capacity in the gradient elution of peptides with a column prepared with a three-monomer system providing a higher peak capacity. However, the performance of hybrid organo-silica monolithic stationary phases in gradient elution of peptides must be improved compared to other monolithic stationary phases. The limiting factor is column efficiency in highly aqueous mobile phases, which needs to be focused on.  相似文献   

6.
Poly(lauryl methacrylate-co-ethylene dimethacrylate) and poly(styrene-co-divinylbenzene) stationary phases in monolithic format have been prepared by thermally initiated free radical polymerization within polyimide chips featuring channels having a cross-section of 200micromx200microm and a length of 6.8cm. These chips were then used for the separation of a mixture of proteins including ribonuclease A, myoglobin, cytochrome c, and ovalbumin, as well as peptides. The separations were monitored by UV adsorption. Both the monolithic phases based on methacrylate and on styrene chemistries enabled the rapid baseline separation of most of the test mixtures. Best performance was achieved with the styrenic monolith leading to fast baseline separation of all four proteins in less than 2.5min. The in situ monolith preparation process affords microfluidic devices exhibiting good batch-to-batch and injection-to-injection repeatability.  相似文献   

7.
The morphology of organic monolithic stationary phases based on poly(styrene-divinylbenzene) was modified by changing the ratio of monomers to microporogen in order to make them also suitable for small molecule separations. The morphology of the columns was characterized by high-resolution scanning electron micrography, showing larger primary globules and larger macropores, as well as no mesopores >20 nm in the monolithic skeleton. The permeability of the modified monoliths was approximately three times higher than that of columns which have been optimized for large molecule separations, enabling operation of a 30 cm long column at pressures below 250 bar. In the isocratic separation of dansylated amino acids, plate counts of 50000–107000 m−1 were achievable, which are equivalent to efficiencies obtained with 3.1 μm porous particles. The separation performance for small molecules in gradient elution was investigated using mixtures of dansylated amino acids, β-lactam antibiotics, and thyroid hormones. Finally, the modified monolithic capillary columns also proved to be highly efficient in the separation of biopolymers such as peptides and proteins, enabling peak width at half height of 3–8 s and peak capacities of 110–180 in 15–30 min gradient runs.  相似文献   

8.
A weak cation-exchange monolithic column was prepared by modifying the GMA-EDMA (glycidyl methacrylate-co-ethylene glycol dimethacrylate) monoliths with ethylenediamine and monochloracetic acid. The properties of the column were investigated; the column exhibited the ability of low backpressure and fast analysis. Using this monolithic column, trace doxazosin in human serum albumin (HSA) solution and plasma samples has been on-line tested, the extraction efficiency and the maximum loading capacity of the monolithic column were obtained. The results showed that the monolithic column could realize deproteinization and trace drug enrichment simultaneously in the HSA solution and human plasma, which provided a simple, cheap, effective and friendly to environment method for assaying drugs in the blood.  相似文献   

9.
建立了牛肝中5种阿维菌素类药物残留的疏水整体柱在线固相萃取结合高效液相色谱-串联质谱测定的方法。以疏水的聚(甲基丙烯酸丁酯-乙二醇二甲基丙烯酸酯)整体柱(10 mm×2.1 mm)作为固相萃取介质,考察了上样流动相和洗脱流速对阿维菌素类药物的萃取效果,优化了梯度洗脱流动相的种类及质谱条件。方法在1~100 μg/L范围内线性关系良好(r>0.995),定量限为5 μg/kg。在5、10、50、100 μg/kg添加水平的回收率为77.4%~98.4%,日内和日间相对标准偏差分别为4.46%~8.03%和4.79%~8.68%,并且该柱反复使用400次后未发现萃取效率降低。结果表明,该整体柱对牛肝中5种阿维菌素类药物能够有效萃取,并且可以重复使用。该方法简单,自动化程度高,可应用于常规阿维菌素类药物残留分析。  相似文献   

10.
Optimisation of peak capacity is an important strategy in gradient liquid chromatography (LC). This can be achieved by using either long columns or columns packed with small particles. Monolithic columns allow the use of long columns at relatively low back-pressure. The gain in peak capacity using long columns was evaluated by the separation of a tryptic bovine serum albumin digest with an LC–UV–mass spectrometry (MS) system and monolithic columns of different length (150 and 750 mm). Peak capacities were determined from UV chromatograms and MS/MS data were used for Mascot database searching. Analyses with a similar gradient slope for the two columns produced ratios of the peak capacities that were close to the expected value of the square root of the column length ratio. Peak capacities of the short column were 12.6 and 25.0 with 3 and 15 min gradients, respectively, and 29.7 and 41.0 for the long column with 15 and 75 min gradients, respectively. Protein identification scores were also higher for the long column, 641 and 750 for the 3- and 15-min gradients with the short column and 1,376 and 993 for the 15- and 75-min gradients with the long column. Thus, the use of long monolithic columns provides improved peptide separation and increased reliability of protein identification.  相似文献   

11.
An adamantyl (ADM)-functionalized monolithic stationary phase was newly synthesized by a single-step copolymerization of 1-adamantyl-(α-trifluoromethyl) acrylate, ethylene dimethacrylate, and 2-acrylamido-2-methyl-1-propanesulfonic acid in order to prevent the peak tailing of basic solutes in capillary electrochromatography and was compared with butyl methacrylate (BMA)-based one. The ADM structure shields the negatively charged groups on the surface of monolith from basic solutes, resulting in better peak shapes than BMA-based monolithic stationary phase. As the monomers ratio decreased, the monolithic column had lower retention and higher column efficiency which was likely due to lower phase ratio and smaller globule size of monolith, respectively. The ADM-functionalized monolithic columns exhibited a good repeatability and reproducibility of column preparation with relative standard deviation values below 9% in the studied chromatographic parameters.  相似文献   

12.
Two different monoliths, both containing phosphoric acid functional groups and polyethylene glycol (PEG) functionalities were synthesized for cation-exchange chromatography of peptides and proteins. Phosphoric acid 2-hydroxyethyl methacrylate (PAHEMA) and bis[2-(methacryloyloxy)ethyl] phosphate (BMEP) were reacted with polyethylene glycol diacrylate (PEGDA) and polyethylene glycol acrylate (PEGA), respectively, in 75-μm i.d. UV-transparent fused-silica capillaries by photo-initiated polymerization. The hydrophobicities of the monoliths were evaluated using propyl paraben under reversed-phase conditions and synthetic peptides under ion-exchange conditions. The resulting monoliths exhibited lower hydrophobicities than strong cation-exchange monoliths previously reported using PEGDA as cross-linker. Dynamic binding capacities of 31.2 and 269 mg/mL were measured for the PAHEMA–PEGDA and BMEP–PEGA monoliths, respectively. Synthetic peptides were eluted from both monoliths in 15 min without addition of acetonitrile to the mobile phase. Peak capacities of 50 and 31 were measured for peptides and proteins, respectively, using a PAHEMA–PEGDA monolith. The BMEP–PEGA monolith showed negligible hydrophobicity. A peak capacity of 31 was measured for the BMEP–PEGA monolith when a 20-min salt gradient rate was used to separate proteins. The effects of functional group concentration, mobile phase pH, salt gradient rate, and hydrophobicity on the retention of analytes were investigated. Good run-to-run [relative standard deviation (RSD) < 1.99%] and column-to-column (RSD < 5.64) reproducibilities were achieved. The performance of the monoliths in ion-exchange separation of peptides and proteins was superior to other polymeric monolithic columns reported previously when organic solvents were not added to the mobile phase.  相似文献   

13.
Two polystyrene-based capillary monolithic columns of different length (50 and 250 mm) were used to evaluate the effects of column length on gradient separation of protein digests. A tryptic digest of a 9-protein mixture was used as a test sample. Peak capacities were determined from selected extracted ion chromatograms, and tandem mass spectrometry data were used for database matching using the MASCOT search engine. Peak capacities and protein identification scores were higher for the long column with all gradients. Peak capacities appear to approach a plateau for longer gradient times; maximum peak capacity was estimated to be 294 for the short column and 370 for the long column. Analyses with similar gradient slope produced a ratio of the peak capacities of 3.36 for the long and the short column, which is slightly higher than the expected value of the square root of the column length ratio. The use of a longer monolith improves peptide separation, as reflected by higher peak capacity, and also increases protein identification, as observed from higher identification scores and a larger number of identified peptides. Attention has also been paid to the peak production rate (PPR, peak capacity per unit time). For short analysis times, the short column produces a higher PPR, while for analysis times longer than 40 min, the PPR of the 250-mm column is higher.  相似文献   

14.
Ultrashort monolithic columns (disks) were thoroughly studied as efficient stationary phases for precipitation–dissolution chromatography of synthetic polymers. Gradient elution mode was applied in all chromatographic runs. The mixtures of different flexible chain homopolymers, such as polystyrenes, poly(methyl methacrylates), and poly(tert‐butylmethacrylates) were separated according to their molecular weights on both commercial poly(styrene‐co‐divinylbenzene) disks (12 id × 3 mm and 5 × 5 mm) and lab‐made monolithic columns (4.6 id × 50 mm) filled with supports of different hydrophobicity. The experimental conditions were optimized to reach fast and highly efficient separation. It was observed that, similar to the separation of monoliths of other classes of (macro)molecules (proteins, DNA, oligonucleotides), the length of column did not affect the peak resolution. A comparison of the retention properties of the poly(styrene‐co‐divinylbenzene) disk‐shaped monoliths with those based on poly(lauryl methacrylate‐co‐ethylene dimethacrylate), poly(butyl methacrylate‐co‐ethylene dimethacrylate), and poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) supports demonstrated the obvious effect of surface chemistry on the resolution factor. Additionally, the results of the discussed chromatographic mode on the fast determination of the molecular weights of homopolymers used in this study were compared to those established by SEC on columns packed with sorbent beads of a similar nature to the monoliths.  相似文献   

15.
Porous poly(butyl methacrylate-co-ethylene dimethacrylate), poly(benzyl methacrylate-co-ethylene dimethacrylate), and poly(styrene-co-divinylbenzene) monoliths have been prepared on the top of standard sample plates used for matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and the modified plates were used for laser desorption/ionization mass spectrometry (LDI-MS). The hydrophobic porous surface of these monoliths enables the transfer of sufficient energy to the analyte to induce desorption and ionization prior to TOFMS analysis. Both UV and thermally initiated polymerization using a mask or circular openings in a thin gasket have been used to define spot locations matching those of the MALDI plates. The desorption/ionization ability of the monolithic materials depends on the applied laser power, the solvent used for sample preparation, and the pore size of the monoliths. The monolithic matrices are very stable and can be used even after long storage times in a typical laboratory environment without observing any deterioration of their properties. The performance of the monolithic material is demonstrated with the mass analysis of several small molecules including drugs, explosives, and acid labile compounds. The macroporous spots also enable the archiving of samples.  相似文献   

16.
Several monolithic macroporous polymer sorbents (pore size 1–2 µm) based on alkyl methacrylates and ethylene glycol dimethacrylate as a cross-linking agent were prepared by free radical copolymerization in columns 3×150 mm. The influence of compositions of the reaction mixture and porogens and the nature of the alkyl radical in a mixture of monomers on the hydrodynamic and chromatographic characteristics of the monoliths was studied. The monoliths based on n-butyl methacrylate have rigid macroporous morphology and excellent hydrodynamic characteristics (flow rate up to 5 mL min?1). The efficiency of separation of a mixture of benzene and its derivatives in the version of reversed-phase HPLC was shown to increase with an increase in the fraction of a lauryl methacrylate additive (LMA) in the reaction mixture. The maximum separation efficiency (number of theoretical plates (tp)) was 35 000 tp m?1 for the monolith based on n-butyl methacrylate with 7% LMA in the reaction mixture.  相似文献   

17.
The use of two different monoliths located in capillaries for on-line protein digestion, preconcentration of peptides and their separation has been demonstrated. The first monolith was used as support for covalent immobilization of pepsin. This monolith with well-defined porous properties was prepared by in situ copolymerization of 2-vinyl-4,4-dimethylazlactone and ethylene dimethacrylate. The second, poly(lauryl methacrylate-co-ethylene dimethacrylate) monolith with a different porous structure served for the preconcentration of peptides from the digest and their separation in reversed-phase liquid chromatography mode. The top of the separation capillary was used as a preconcentrator, thus enabling the digestion of very dilute solutions of proteins in the bioreactor and increasing the sensitivity of the mass spectrometric detection of the peptides using a time-of-flight mass spectrometer with electrospray ionization. Myoglobin, albumin, and hemoglobin were digested to demonstrate feasibility of the concept of using the two monoliths in-line. Successive protein injections confirmed both the repeatability of the results and the ability to reuse the bioreactor for at least 20 digestions.  相似文献   

18.
Two novel polymeric monoliths for anion-exchange capillary liquid chromatography of proteins were prepared in a single step by a simple photoinitiated copolymerization of 2-(diethylamino)ethyl methacrylate and polyethylene glycol diacrylate (PEGDA), or copolymerization of 2-(acryloyloxy)ethyl trimethylammonium chloride and PEGDA, in the presence of selected porogens. The resulting monoliths contained functionalities of diethylaminoethyl (DEAE) as a weak anion-exchanger and quaternary amine as a strong anion-exchanger, respectively. An alternative weak anion-exchange monolith with DEAE functionalities was also synthesized by chemical modification after photoinitiated copolymerization of glycidyl methacrylate (GMA) and PEGDA. Important physical and chromatographic properties of the synthesized monoliths were characterized. The dynamic binding capacities of the three monoliths (24 mg/mL, 56 mg/mL and 32 mg/mL of column volume, respectively) were comparable or superior to values that have been reported for various other monoliths. Chromatographic performance was also similar to that provided by a modified poly(GMA-ethylene glycol dimethacrylate) monolith. Separation of standard proteins was achieved under gradient elution conditions using these monolithic columns. Peak capacities of 34, 58 and 36 proteins were obtained with analysis times of 20–30 min. This work represents a successful attempt to prepare functionalized monoliths via direct copolymerization of monomers with desired functionalities. Compared to earlier publications, additional surface modifications were avoided and the PEGDA crosslinker helped to improve the biocompatibility of the monolithic backbone.  相似文献   

19.
Capillary liquid chromatography based on particulate and monolithic stationary phases was used to screen complex peptide libraries by fast gradient elution coupled on-line to electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS). A slightly modified commercial electrospray interface consisting of a fused-silica transfer capillary and low dead volume stainless steel union at which the electrospray voltage was grounded enabled the effluent of all the capillary columns to be directly sprayed into the mass spectrometer. Stable electrospray conditions were generated over a wide range of mobile phase compositions, alleviating the need for a tapered end of the spray capillary, pneumatic assistance or preheated nebulizer gas. Since the identification of complex samples containing numerous isobaric substances is facilitated by chromatographic separation prior to mass spectrometry, stationary phase materials have been employed which offer a fast, efficient elution and, due to the complexity of samples, a high loading capacity. Silica-based monolithic capillary columns combine these three characteristics in a unique manner due to a tailored adjustment of both macro- and mesopore sizes in the highly porous silica structure. As we demonstrate by a comparative study of the silica-based monolithic and packed capillaries for LC/MS analysis of complex peptide libraries, silica monoliths show superior performance over packed beds of small-diameter particles with respect to analysis time and separation efficiency. Libraries with more than 1000 different peptides could be screened in less than 20 min.  相似文献   

20.
High-throughput plasmid DNA (pDNA) manufacture is obstructed predominantly by the performance of conventional stationary phases. For this reason, the search for new materials for fast chromatographic separation of pDNA is ongoing. A poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (GMA-EGDMA) monolithic material was synthesised via a thermal-free radical reaction, functionalised with different amino groups from urea, 2-chloro-N,N-diethylethylamine hydrochloride (DEAE-Cl) and ammonia in order to investigate their plasmid adsorption capacities. Physical characterisation of the monolithic polymer showed a macroporous polymer having a unimodal pore size distribution pivoted at 600 nm. Chromatographic characterisation of the functionalised polymers using pUC19 plasmid isolated from E. coli DH5alpha-pUC19 showed a maximum plasmid adsorption capacity of 18.73 mg pDNA/mL with a dissociation constant (KD) of 0.11 mg/mL for GMA-EGDMA/DEAE-Cl polymer. Studies on ligand leaching and degradation demonstrated the stability of GMA-EGDMA/DEAE-Cl after the functionalised polymers were contacted with 1.0 M NaOH, which is a model reagent for most 'cleaning in place' (CIP) systems. However, it is the economic advantage of an adsorbent material that makes it so attractive for commercial purification purposes. Economic evaluation of the performance of the functionalised polymers on the grounds of polymer cost (PC)/mg pDNA retained endorsed the suitability of GMA-EGDMA/DEAE-Cl polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号