首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface modification of electrodes attracts great interest in electrocatalysis. It has often been observed that deposition of foreign adatoms on the surface of an electrode can originate a significant enhancement in the catalytic activity. For example, it has been reported that nickel deposits on Pt surfaces improve the rate of the hydrogen evolution reaction (HER, Nature Energy 2017, 2, 17031). During the deposition process of such metal adlayers, the pH and the nature of the ions in the electrolyte play an important role. Phosphate species are typically used to prepare buffer solutions in a wide range of pH. Therefore, electrolytes containing phosphate species are used in a large number of applications. However, the effect of phosphate on platinum surface modification with nickel deposits has not been studied yet. In this work, new data about the interaction of phosphate with nickel adatoms deposited on Pt(111) at pH 5 is investigated using cyclic voltammetry and infrared spectroscopy. The results show that, when nickel is in solution, the phosphate ions are adsorbed at lower potentials than in the absence of nickel. In addition, Laser-Induced Temperature Jump Technique demonstrates that nickel facilitates the adsorption of phosphate because of a shift of the potential of zero charge (pzc) toward negative potentials. This increases the magnitude of the positive electric field on the electrode surface, at a given potential E>pzc, facilitating the adsorption of anions. CO displacement technique has been also employed to obtain additional information about co-adsorbed phosphate on nickel adlayers. Finally, the HER has been studied at pH 5 in the presence of nickel, with and without phosphate in the bulk solution.  相似文献   

2.
Platinum stepped surfaces vicinal to the (1 1 0) crystallographic pole have been investigated voltammetrically in 0.1 M HClO4 and 0.1 M H2SO4 solutions. Changes in the voltammetric profile with the step density suggest the existence of two types of surface sites, that has been ascribed to linear and bidimensional domains. This result indicates the existence of important restructuring processes that separate the real surface distribution from the nominal one. The electronic properties of the surfaces have been characterized with the CO charge displacement method and the potential of zero total charge has been calculated as a function of the step density.  相似文献   

3.
镍和铂单晶(111)面上氢解离的比较研究周鲁,孙本繁,吕日昌,唐向阳,滕礼坚(中国科学院大连化学物理研究所分子反应动力学国家重点实验室,大连116023)关键词镍晶面,铂晶面,氢解离吸附,位能面,分子催化过渡金属镍和铂是催化加氢、脱氢以及临氢重整的重...  相似文献   

4.
Real surface structures of the high-index planes of Pt with three atomic rows of terraces (Pt(331) = 3(111)-(111) and Pt(511) = 3(100)-(111)) have been determined in 0.1 M HClO(4) at 0.1 and 0.5 V(RHE) with the use of surface X-ray scattering (SXS). The surfaces with two atomic rows of terraces, Pt(110) = 2(111)-(111) and Pt(311) = 2(100)-(111) = 2(111)-(100), are reconstructed to a (1 × 2) structure according to previous studies. However, the surfaces with three atomic rows of terraces have pseudo-(1 × 1) structures. The interlayer spacing between the first and the second layers, d(12), is expanded 13% on Pt(331) compared to that of the bulk, whereas it is contracted 37% on Pt(511). The surface structures do not depend on the applied potential on either surface.  相似文献   

5.
The pristine point of zero charge of Tl(2)O(3) determined in the presence of NaNO(3) using the inert electrolyte titration method and confirmed by microelectrophoresis is at pH 7.9.  相似文献   

6.
7.
We report, for the first time, the observation of a Gouy–Chapman capacitance minimum at the potential of zero charge of the Pt(111)‐aqueous perchlorate electrolyte interface. The potential of zero charge of 0.3 V vs. NHE agrees very well with earlier values obtained by different methods. The observation of the potential of zero charge of this interface requires a specific pH (pH 4) and anomalously low electrolyte concentrations (<10?3 m ). By comparison to gold and mercury double‐layer data, we conclude that the diffuse double layer structure at the Pt(111)‐electrolyte interface deviates significantly from the Gouy–Chapman theory in the sense that the electrostatic screening is much better than predicted by purely electrostatic mean‐field Poisson–Boltzmann theory.  相似文献   

8.
The origin of the potential difference between the potential of zero charge of a metal/water interface and the work function of the metal is a recurring issue because it is related to how water interacts with metal surface in the absence of surface charge. Recently ab initio molecular dynamics method has been used to model electrochemical interfaces to study interfacial potential and the structure of interface water. Here, we will first introduce the computational standard hydrogen electrode method, which allows for ab initio determination of electrode potentials that can be directly compared with experiment. Then, we will review the recent progress from ab initio molecular dynamics simulation in understanding the interaction between water and metal and its impact on interfacial potential. Finally, we will give our perspective for future development of ab initio computational electrochemistry.  相似文献   

9.
Density functional theory calculations were employed to investigate the electronic properties of a Pt(111) surface modified with foreign atoms. The effects of alloying platinum with molybdenum, palladium, and tin changed the interaction between adsorbate orbital and metal d band. This letter discusses the interaction between metal atoms and adsorbate and its influence on electronic structure rearrangement of the species—changes that must be taken into account to explain the behavior of catalytic systems and sensors. Mo/Pt(111) and Sn/Pt(111) exhibited lower susceptibility to poisoning by CO, compared with pure platinum. Both Pt-based materials are expected to find utility in electrodes for alcohol and hydrogen oxidation.  相似文献   

10.
Sulfur, a pollutant known to poison fuel‐cell electrodes, generally comes from S‐containing species such as hydrogen sulfide (H2S). The S‐containing species become adsorbed on a metal electrode and leave atomic S strongly bound to the metal surface. This surface sulfur is completely removed typically by oxidation with O2 into gaseous SO2. According to our DFT calculations, the oxidation of sulfur at 0.25 ML surface sulfur coverage on pure Pt(111) and Ni(111) metal surfaces is exothermic. The barriers to the formation of SO2 are 0.41 and 1.07 eV, respectively. Various metals combined to form bimetallic surfaces are reported to tune the catalytic capabilities toward some reactions. Our results show that it is more difficult to remove surface sulfur from a Ni@Pt(111) surface with reaction barrier 1.86 eV for SO2 formation than from a Pt@Ni(111) surface (0.13 eV). This result is in good agreement with the statement that bimetallic surfaces could demonstrate more or less activity than to pure metal surfaces by comparing electronic and structural effects. Furthermore, by calculating the reaction free energies we found that the sulfur oxidation reaction on the Pt@Ni(111) surface exhibits the best spontaneity of SO2 desorption at either room temperature or high temperatures.  相似文献   

11.
The value of the potential of zero total charge (pztc) of stepped Pt(1 1 1) electrodes, whose step sites have been blocked by irreversibly adsorbed bismuth, has been determined by means of the CO displacement experiment. It has been observed that the pztc of the decorated surfaces shift positively with respect to that of the substrate stepped surface electrode. In this way the electrode total charge at constant potential diminishes by effect of the adatom adsorption. The oxidation of adsorbed CO takes place at higher potentials on the decorated surfaces, pointing out a direct effect of the pztc shift on their reactivity as electrocatalyzers.  相似文献   

12.
The geometrical arrangement of sites favourable for formic acid oxidation and the poison formation reaction is determined using low index platinum single crystal planes. For this determination, the least number of sites required for the reactions to occur, which was obtained in the study of electrocatalysis by adatoms, was used, that is three adjacent sites are required for formic acid oxidation and four adjacent sites are required for poison formation.The triplet of sites on a unit lattice of Pt (111) and that on a unit lattice of Pt (100) plane are equally very favourable for the main oxidation reaction, but that on a unit lattice of Pt (110) is not so favourable as those on the former two planes. The oxidation rate is more than one order of magnitude lower on the latter than on the former triplets.The poison formation reaction proceeds at a very high rate on the (100) and the (110) planes. The geometrical arrangement of four sites on a square unit lattice of the (100) plane and on a rectangular unit lattice of the (110) plane are favourable for the poison formation reaction, but that on a hexagonal unit lattice of the (111) plane is not so favourable as the former two.  相似文献   

13.
采用密度泛函理论与周期性平板模型相结合的方法,对CO在Pt(111)表面top,fcc,hcp和bridge 4个吸附位和Pt-M(111)(M=Ni,Mg)表面h-top,M-top,Pt(M)Pt-bridge,Pt(M)M-bridge,Pt(Pt)M-bridge,M(Pt)M-bridge,Pt1M2-hcp...  相似文献   

14.
The transient response mechanism of the platinum electrode to the uncoupled ions may be interpreted with the mixed phase formation (MPF) model of the transient response of precipitate-based ion-selective electrodes to interfering ions for Kxy ≪ 1. It is discovered that the peak height of the transient signal is related to the solubility of M(OH)2 and hydration heat of M2+. The relation between the positive peak height of transient signal of pb2+ or cd2+ and lgam obey the Nernst equation, while that of Ca2+ or Mg2+ does not. The equilibrium potential is not of Nernst response for all ions. Project supported by the National Natural Science Foundation of China.  相似文献   

15.
Platinum is a catalyst of choice in scientific investigations and technological applications, which are both often carried out in the presence of oxygen. Thus, a fundamental understanding of platinum’s (electro)catalytic behavior requires a detailed knowledge of the structure and degree of oxidation of platinum surfaces in operando. ReaxFF reactive force field calculations of the surface energies for structures with up to one monolayer of oxygen on Pt(111) reveal four stable surface phases characterized by pure adsorbate, high‐ and low‐coverage buckled, and subsurface‐oxygen structures, respectively. These structures and temperature programmed desorption (TPD) spectra simulated from them compare favorably with and complement published scanning tunneling microscopy (STM) and TPD experiments. The surface buckling and subsurface oxygen observed here influence the surface oxidation process, and are expected to impact the (electro)catalytic properties of partially oxidized Pt(111) surfaces.  相似文献   

16.
The reduction of acetaldehyde oxime (AO) in acid medium on platinum surfaces is a structure sensitive reaction that takes place almost exclusively on (111) sites of Pt electrodes, and it is strongly inhibited on Pt(100) and Pt(110) surfaces. A study using stepped electrodes with (111) terraces and monoatomic steps either with (100) and (110) orientation shows that the activity of the electrode is also dependent on the terrace width, i.e., the wider the terrace is, the higher current density is recorded and the more positive the peak potential for AO reduction appears. Moreover, in the electrodes with (100) step sites, the reduction process appears at more negative potential than the electrodes with (111) step sites. Nanoparticles with some preferential orientations were also tested for the AO reduction reaction to check the presence of (111) ordered domains on the nanoparticles surface. Dedicated to Teresa Iwasita on the occasion of her retirement and for her contributions to Electrochemistry.  相似文献   

17.
Low-energy electron diffraction patterns were obtained for Pt(100), Pt(111) and polycrystalline electrodes before and after exposure to aqueous 1 M H2SO4. Linear potential scan voltammograms were recorded. The results demonstrate that one of the principal peaks in the hydrogen region of the current-potential curves of polycrystalline Pt is assignable to Pt(100) and the other to Pt(111). The maximum amount of chemisorbed hydrogen corresponds to one hydrogen atom per surface Pt atom. The Pt(100)[1×1], Pt(111) and polycrystalline surfaces appear to withstand prolonged voltammetric characterization at potentials between ?0.2 and 1.2 V vs. a calomel reference. Variation of the voltammetric characteristics of hydrogen chemisorption with changes in the nature of the supporting electrolyte anion are described.  相似文献   

18.
It is shown that for numerous sp-metals there exists no unified work function (W e) dependence of the potential of zero charge E q = 0 and the potential drop characterizing the metal lyophilic behavior Δ M Hg E chem) q = 0. The reason is that the metal work function is by no means the only factor affecting the value of E q = 0. The quantities E q = 0 and (Δ M Hg E chem) q = 0 depend also on the distance of the solvent dipoles’ closest approach to metal surfaces (d ms) in the absence of the metal-solvent chemisorption interaction. When the metal-solvent chemisorption interaction is involved, this distance affects the degree of overlapping of the metal’s acceptor levels and the upper occupied donor levels in the solvent molecules. To reliably investigate the effect of any of these factors on E q = 0, the other one should be fixed up. It is shown, by example of Ga-, Bi-Gaand Sn-Ga-electrodes, as well as Pb-Ga-, In-Ga-, and Cd-Ga-electrodes demonstrating very close values of the “electrochemical work function” that the metal-solvent chemisorption interaction becomes stronger with the decreasing of d ms. The influence of this factor is intensified with the increasing of the solvent’s donor number DN. The W e dependence of E q = 0 and (Δ M Hg E chem) q = 0 can be traced by example of metals with nearly equal d ms values, e.g., Tl-Ga, In-Ga, and Ga. In all studied solvents, the deviation of E q = 0 from W e increased in the series Tl-Ga < In-Ga < Ga, that is, with the increasing of the metal’s work function in vacuum. The effect is intensified with the increasing of the solvent’s DN. The obtained results agree with the concept of donor-acceptor nature of the metal-solvent chemisorption interaction.  相似文献   

19.
Adhesion of Cryptosporidium parvum and Giardia lamblia to four materials of different surface charge and hydrophobicity was investigated. Glass beads were used with and without three polymer coatings: aminosilines (A0750), fluorosilines (T2494), an amino cationic polymer. Surface charge density and hydrophobicity of the beads were characterized by measuring the zeta potential (ZP) and the contact angle, respectively. Adhesion was derived from batch experiments where negatively charged (oo)cysts were mixed with the beads and recovery was determined by counting (oo)cysts remaining in suspension using a flow cytometer. Experimental results clearly show that adhesion to solid surfaces of C. parvum is different from G. lamblia. Adhesion of C. parvum to positively charged, hydrophilic beads (82% recovery relative to control) indicated that surface charge was the more important factor for C. parvum, dominating any hydrophobic effects. Adhesion of G. lamblia cysts to negatively charged, hydrophobic beads (0% recovery relative to control) indicated that although hydrophobicity and surface charge both played a role in the adhesion of G. lamblia to solid surfaces, hydrophobicity was more important than surface charge.  相似文献   

20.
The pH-dependent surface charging of tellurium (IV) oxide has been studied. The isoelectric point (IEP) of tellurium (IV) oxide was determined by microelectrophoresis in various 1-1 electrolytes over a concentration range of 0.001–0.1 M. In all electrolytes studied and irrespective of their concentration the zeta potential of TeO2 was negative over the pH range 3–12. In other words the IEP of TeO2 is at pH below 3 (if any). TeO2 specifically adsorbs ionic surfactants, and their presence strongly affects the zeta potential. In contrast the effect of multivalent inorganic ions on the zeta potential of TeO2 is rather insignificant (no shift in the IEP). In this respect TeO2 is very different from metal oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号