首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Classical electrodynamics can be constructed formally as the theory of a linear elastic continuum. The Coulomb gauge expresses the medium incompressibility. The vector potential corresponds to the medium velocity. The pressure stands for the scalar potential. The electric field is modelled by an external force whose origin is beyond the elastic model. The electric charge corresponds to a medium defect which produces the perturbation ~ 1/r of the pressure field. The defects interact with each other according to the conservation law in the torsion field of the medium.  相似文献   

2.
In calculating high-current relativistic beams of charged particles moving in electromagnetic fields, it is necessary to take account of the effect of the electric and magnetic self-fields products by the beams themselves. This effect has been modeled on a computer [1, 2]. The present paper describes numerical algorithms contained in the KSI-BÉSM compiling system [3] which permit the inclusion of a broad class of relativistic problems, taking account of the magnetic field of currents flowing in the metal parts of the device being calculated, and also problems with virtual cathodes.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 3–8, May–June, 1979.  相似文献   

3.
In micromechanics, accurate quantification of the elastic field (stress, strain, and displacement) caused by the presence of an inclusion in an infinite body is desired for both the particle and matrix materials. Ideally, the solution should be applicable to any particle geometry or shape and for any distribution of misfit along the interface (i.e. misfit profile). This work presents a dislocation-based numerical method, that is an extension to earlier work in this journal [Lerma, J.D., Khraishi, T., Shen, Y.L., Wirth, B.D., 2003. The elastic fields of misfit cylindrical particles: a dislocation-based numerical approach. Mech. Res. Commun. 30, 325–334], for determining the elastic fields of volume misfit particles with arbitrary misfit distribution or particle shape.  相似文献   

4.
The equations describing the interaction of an electromagnetic sensitive elastic solid with electric and magnetic fields under finite deformations are summarized, both for time-independent deformations and, in the non-relativistic approximation, time-dependent motions. The equations are given in both Eulerian and Lagrangian form, and the latter are then used to derive the equations governing incremental motions and electromagnetic fields superimposed on a configuration with a known static finite deformation and time-independent electromagnetic field. As a first application the equations are specialized to the quasimagnetostatic approximation and in this context the general equations governing time-harmonic plane-wave disturbances of an initial static configuration are derived. For a prototype model of an incompressible isotropic magnetoelastic solid a specific formula for the acoustic shear wave speed is obtained, which allows results for different relative orientations of the underlying magnetic field and the direction of wave propagation to be compared. The general equations are then used to examine two-dimensional motions, and further expressions for the wave speed are obtained for a general incompressible isotropic magnetoelastic solid.  相似文献   

5.
6.
7.
Dilute, dispersed two-phase flows arise in many contexts ranging from solid particles or droplets in gas flows to bubbles in liquids. Many of the flows of interest are turbulent, which presents a complex problem to analyze or to determine the dominant physical processes contributing to the observed phenomena. Advances in experimental techniques have made it possible to measure directly turbulent and particle velocity fluctuations in dilute systems. This has provided a counterpart to advances in computational and analytical models and a basis on which to test these models. Three specific areas are considered: the fluctuating forces on an individual particle in an unsteady flow, the response of a solid particle to a turbulent air flow, and the corresponding response of a small bubble in turbulent liquid flows. Results from direct numerical simulations are presented for each of these, including the nonuniform distribution of particles generated by local instantaneous features of the flow. The issue of turbulence modulation at low to moderate void fractions is discussed.  相似文献   

8.
9.
The paper concerns the effects of particle inertia, density, and size on acceleration statistics. A simple analytical model for estimating the acceleration variance of particles suspended in an isotropic homogeneous turbulent flow field is developed. This model is capable of qualitative describing the particle acceleration variance over the entire range of the particle-to-fluid density ratio. Comparisons of model predictions with numerical simulations and experimental data are presented.  相似文献   

10.
A statistical kinetic model describing the dispersion and clustering of particles with different inertia in homogeneous turbulence is presented. The model developed is used for calculating the relative velocity, the radial distribution function, and the particle collision kernel in a stationary bidisperse suspension. The results obtained are compared with the data of a direct numerical simulation.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, 2005, pp. 94–107. Original Russian Text Copyright © 2005 by Alipchenkov and Zaichik.  相似文献   

11.
Applied Mathematics and Mechanics - Coupling effects among different physical fields reflect the conversion of energies from one field into another substantially. For simple physical processes,...  相似文献   

12.
The results of modeling of the statistical parameters of a turbulent particle motion in a vertical plane channel are presented. The model is based on a kinetic equation for the particle velocity probability density function. The results are compared with direct numerical simulation.  相似文献   

13.
14.
Open celled metal foams fabricated through metal sintering are a new class of material that offers novel mechanical and acoustic properties. Previously, polymer foams have been widely used as a means of absorbing acoustic energy. However, the structural applications of these foams are limited. The metal sintering approach offers a cost- effective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys. In this first part of two-paper series, the mechanical properties of open-celled steel alloy (FeCrAlY) foams were characterized under uniaxial compression and shear loading. Compared to predictions from established models, a significant knockdown in material properties was observed. This knockdown was attributed to the presence of defects throughout the microstructure that result from the unique fabrication process. Further in situ tests were carried out in a SEM (scanning electronic microscope) in order to investigate the effects of defects on the properties of the foams. Typically, the onset of plastic yielding was observed to occur at defect locations within the microstructure. At lower relative densities, ligament bending dominates, with the deformation initializing at defects. At higher relative densities, an additional deformation mechanism associated with membrane elements was observed. In the follow-up of this paper, a finite element model will be constructed to quantify the effects of defects on the mechanical performance of the open-cell foam. The project supported by the US Office of Naval Research (N000140210117), the National Basic Research Program of China (2006CB601202), the National Natural Science Foundation of China (10328203, 10572111, 10632060), and the National 111 Project of China (B06024).  相似文献   

15.
The present work is concerned with the interaction between large particles and gas phase turbulence. Gas turbulence modulation in these systems is considered to be dominated by a generation mechanism which arises due to the presence of wakes behind particles. Following a recent proposal, a closure for gas turbulence modulation accounting for the effect of wakes is employed within the context of a mathematical model for particle-laden, turbulent flows. The model accounts for particle particle and particle-wall interactions associated with larger particles based on concepts from gas kinetic theory. It is shown that due to the significant flattening of the mean gas velocity profile with the addition of particles, and the corresponding decrease in turbulent energy production, a generation mechanism must be present in order to produce gas velocity fluctuation predictions which are consistent with the experimental measurements, even in the case where the experimental results indicate a net suppression of gas phase turbulence in the presence of particles.  相似文献   

16.
载人列车车厢内空气流场温度场数值模拟   总被引:4,自引:0,他引:4  
采用稳态不可压缩雷诺时均N-S方程、k-ε湍流模型,计算了载人列车车厢内三维空气流场和温度场。将太阳辐射热和人体散热作为能量方程的附加源项,研究了在条缝送风条件下,乘客和太阳辐射对车厢内流场和温度场的影响。计算结果表明:现有的送风方式除车厢两端外,车厢内沿长度方向气流分布比较均匀;送风口的布置对车厢内流场温度场分布影响较大,送风气流在车厢两侧形成两股比较大的流动旋涡;人体散热和太阳辐射对车厢内流场温度场影响较大,非空载时车厢内流场分布与空载时有较大差别,太阳照射和人体产生的热气流使车厢内存在较大的温度梯度,靠窗处的温度较高,过道处温度较低。流场温度场的计算结果和实验数据吻合较好。  相似文献   

17.
N. V. Malai 《Fluid Dynamics》2006,41(6):984-991
The photophoretic motion of a solid spherical particle in a viscous fluid is described theoretically in the Stokes approximation for small Péclet and Reynolds numbers and large temperature differences near the particle. In solving the hydrodynamic equations, an exponential-power law is used for the temperature dependence of the viscosity. The heat transfer equations are solved using the method of matched asymptotic expansions. The possibility of the experimental observation of photophoresis in liquids is discussed.  相似文献   

18.
为了研究力场-化学场耦合作用下的含裂纹电解质的断裂问题,本文构造了耦合情况下力场和浓度场的本构关系,并由这些本构关系建立了力场-化学场耦合问题的有限元方程。通过具体的算例,进一步探讨了裂纹尖端应力场和氧空位浓度分布的耦合作用对GDC(氧化钆掺杂的氧化铈)力学行为的影响,发现在耦合作用下,裂尖应力场对氧空位的分布有明显的诱导作用。  相似文献   

19.
20.
The issue of mechanical characterization of polysilicon used in micro electro mechanical systems (MEMS) is discussed in this paper. An innovative approach based on a fully on-chip testing procedure is described; two ad hoc designed electrostatically actuated microsystems are here used in order to determine experimentally the Young’s modulus and the rupture strength of polysilicon. The first device is based on a rotational test structure actuated by a system of comb-finger capacitors which load up to rupture a couple of tapered beams under bending in the plane parallel to the substrate. The second microsystem is based on a large plate with holes. It constitutes with the substrate a parallel plate capacitor moving in the direction orthogonal to the substrate itself. A couple of tapered beams placed at the centre of the plate is loaded up to rupture in bending in the plane orthogonal to the substrate. By means of the two devices, experimental data are obtained: they allow for a careful determination of Young’s modulus and rupture strength. The rupture values are interpreted by means of the Weibull approach; statistical size effects and stress gradient effect are taken into account thus allowing for a direct comparison between the data obtained from the two test structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号