首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main purpose of this paper is to test the model of molecular sorption [Vesely D. Polymer 2001;42:4417-22] for Case II type diffusion by measuring the effect of sorption/swelling and resistance to flow through the swollen region on the mass transport of solvents in glassy amorphous polymer. The system of methanol and polymethylmethacrylate (PMMA) has been selected for easy comparison with the existing literature data.The weight loss of penetrant permeating through the polymer has been monitored using a permeability cell placed on a balance (gravimetry). The rate of diffusion and swelling has been measured using light microscopy on samples cut after different elapsed time exposure to the solvent.The contribution of polymer swelling and resistance to flow has been evaluated by comparing the mass transport during diffusion and permeation processes. It is shown that for thin films the thickness independent component of the mass transport process (swelling) makes a significant contribution to the diffusion rate. For thicker samples the thickness dependent component (the resistance to flow through the swollen polymer) dominates both, diffusion and permeation.  相似文献   

2.
The kinetics of diffusion in polymers ranges from simple Fickian diffusion to higher order diffusion, such as Case II diffusion1-2). The conventional method for determining the characteristics of solvents into polymer matrices is by measuring the mass uptake of the polymer as the solvent penetrates the matrix. However, since such measurements perform observations at a macroscopic level, little information has been obtained relating to the nature of the solvent in the polymer matrix and the mechanisms of the processes that control the diffusion. Nuclear magnetic resonance (NMR) imaging (‘MRI’) has been used to observe the penetration of solvents into solid systems in realtime. The method provides a one- or more-dimensional image of the density and the mobility of the solvent in a material or of the network changes of the material itself due to the softening influence of the solvent. The first (imaging of the solvent) can be used for a quantitative measurement of the diffusion whereas the observation of the network gives information about the changing of the network (mobility, de-crystallization…) during the swelling process. For example the diffusion of organic solvents in some polymeric materials (natural rubber, water gels (PNIPAAm), and nematic diblock-copolymers) are investigated.  相似文献   

3.
A wide range of hydrocarbons were rapidly gelled by adding a polysiloxane copolymer in the presence of divinylbenzene and a platinum catalyst. The gel point was measured over a range of concentrations for hydrocarbons/solvents and organogels, using three separate methods: rheology, visual (tilt-tube) and FTIR. As the fraction of solvent was increased, the rate of reaction decreased, leading to an increase in the gelation time. The absolute value of the gel point depends upon the techniques used to measure it. For any particular system the gel point values always followed the order: rheology > visual > FTIR. The crosslink densities of the gel systems were determined using both swelling and thermomechanical analysis. The swelling measurements confirmed that the addition of large quantities of solvent markedly reduced the crosslink density of the obtained chemical gel networks, which helped in designing gels with suitable critical strength for effective field work. Also the effectiveness of gelation with the proposed gelling system for different hydrocarbons/solvents was evaluated, and discussed in relation to their dielectric properties.This paper is dedicated to Mike Owen on occasion of his winning the DeBruyn medal, the first silicon chemist to do so.  相似文献   

4.
Atomic force microscopy of dense and asymmetric cellulose-based membranes   总被引:5,自引:0,他引:5  
The surface structures of dense and integrally skinned cellulose acetate (CA) and cellulose acetate butyrate (CAB) membranes, prepared by phase inversion under different casting conditions, are investigated by tapping mode atomic force microscopy (TM AFM). The results obtained show that: (i) The top and bottom surfaces of the dense CA membrane were quite uniform in comparison with the corresponding faces of asymmetric CA and CAB membranes. Despite the casting conditions the active and support layers of the asymmetric membranes display large differences on the roughness parameters. (ii) The asymmetric membranes prepared with an organic system as a non-solvent pore-former (method IV) display smaller nodule aggregates and lower values of the roughness parameters than the ones prepared using an inorganic system as swelling agent (method I). This is more pronounced for the CA membranes than for the CAB membranes. (iii) In the active layer of asymmetric CA membranes casted at longer evaporation times, the measured values of surface roughness parameters tend to decrease. Also, for these CA membranes, as the evaporation time increases the average size of the depression areas observed on the surface decreases.

The laboratory-made CA and CAB membranes display a wide range of nanofiltration and reverse osmosis permeation characteristics. These characteristics are correlated to surface roughness parameters of the active layers.  相似文献   


5.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + solvent) were measured at T = 298.2 K and atmospheric pressure. The solvents were methyl isoamyl ketone (5-methyl-2-hexanone), ethyl isoamyl ketone (5-methyl-3-heptanone) and diisobutyl ketone. The tie-line data were correlated by means of the NRTL and UNIQUAC equation, and compared with results predicted by the UNIFAC method. A comparison of the extracting capabilities of the solvents was made with respect to distribution coefficients, separation factors, and solvent free selectivity bases.  相似文献   

6.
Non-ionizable, hydrophilic membranes were prepared by radiation grafting of vinylpyrrolidone into polytetrafluoroethylene films. The conditions under which grafting proceeds into the depth of the films were determined. It was found necessary to use aromatic solvents such as pyridine or benzene. The kinetics of the reaction were examined considering the following parameters: temperature, dose, dose-rate and concentration of monomer. The rate of grafting was found highest for monomer concentrations of 60–70 per cent. The results show that the grafting process is complicated by the high viscosity of the reaction medium and by the fact that the rate of diffusion of monomer into the films may become the controlling factor. The rate of homopolymerization of vinylpyrrolidone was also determined. The swelling of the resulting membranes was studied in various solvents. It was found that the limiting swelling ratio depended on the composition of the film but for given composition the swelling ration in water also depends on the grafting conditions. These various results are discussed.  相似文献   

7.
Polyether ether ketone (PEEK) is a semi-crystalline thermoplastic polymer having excellent mechanical and thermal properties. Exposure of this polymer to aliphatic and aromatic solvents can lead to degradation or swelling of the polymeric material. The present work described the plasticization and stability analysis of semi-crystalline PEEK under different aromatic and aliphatic solvent environment. A variety of solvents (acetone, benzene, benzyl alcohol, chloroform, methanol, and toluene), based on their Hildebrand’s Solubility Parameter, were chosen for investigation. The physico-chemical characteristics of virgin and treated polymeric samples were investigated using Gas Chromatography–Mass Spectrometry (GC–MS), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FTIR) techniques. The results indicated that the solvent exposure did not significantly affect the thermal behavior and chemical structure of the polymer. However, it seems that certain components of the polymer were leached into the solvent phase as revealed by the GC–MS analysis. The present study identified PEEK as a potentially suitable polymer for the applications where high resistance to aliphatic and aromatic solvents is needed.  相似文献   

8.
The swelling of PVF and PVDF films in various solvents was investigated. It was found that in the swollen state both polymers show little tendency to retain the solvent that leaks out under a mild pressure and evaporates quickly when the specimen is exposed to air. The equilibrium swelling ratios were measured in numerous solvents. From the results it is concluded that the solubility parameters are δPVDF = 12.0–12.3, δPVF = 12.0–12.1. The unusual swelling behavior is explained by strong polymer–polymer interactions via dipoles which tend to replace polymer–solvent interactions once the sample is withdrawn from the solvent.  相似文献   

9.
The influence of the solvent on the thickness, morphology and structure of silica-polytetrahydrofuran hybrid films, prepared by spin coating, has been analysed. The inorganic precursor, tetraethylorthosilicate, was hydrolysed under acid catalysis, the hydrolysis molar ratio being 4. Polymers of average molecular weight (M n) 650 and 2900 were incorporated in the initial colloidal solutions, in a low concentration (organic/inorganic molar ratio 0.01). Two solvents were compared: ethanol, protic, and tetrahydrofuran, aprotic and a little less polar. The thickness and surface texture parameters of the films were determined by profilometry, their morphology characterized by SEM and their structure studied by FTIR. It is shown that the solvent has no effect on the molecular structure of the films, but strongly influences the surface texture and the morphology of both pure silica and hybrid films. The solutions prepared in tetrahydrofuran present shorter gelation times (t G) and allow the deposition of good quality films almost up to the gelation point (to a reduced time, t/t G, of 0.9). The films are thinner than those prepared from corresponding ethanolic solutions at the same reduced ageing times. For pure silica films, tetrahydrofuran is the best choice, since it reduces the fractured region on the edge of the substrate. For hybrid films, this effect is achieved by the polymer and tetrahydrofuran is responsible for a higher arithmetical mean roughness. Therefore, ethanol becomes the preferable solvent.  相似文献   

10.
A series of miscible cellulose ester/poly (vinyl phenol) (CE/PVP) blends containing a latent formaldehyde source were prepared. Due to the low molecular weight of the PVP, the maximum PVP content ID the films was 50 wt %. The blends were then thermally cross-linked ID an attempt to create semi-interpenetrating polymer networks (semi-IPN). The blends were characterized with differential scanning calorimetry, swelling experiments, pyrolysis molecular beam mass spectrometry (py-MBMS), and Fourier transform infrared (FTIR) spectroscopy. The results from the swelling experiments, py-MBMS and FTIR showed that the PVP component did react with the formation of methylene bridges. Blends that contained 50% PVP and high levels of formaldehyde formed semi-IPN structures.  相似文献   

11.
Direct radiation grafting of methacrylic acid (MAA) onto polypropylene films (PP) was studied. The effect of different solvents such as benzene, distilled water, dimethyl formamide, isopropanol, isopropanol/water-mixture, on the swelling and the grafting process of MAA onto (PP) films was investigated. It was found that the grafting process was enhanced under vacuum irradiation in benzene as a diluent for MAA as compared with other solvents examined. The dependence of the grafting rate on such monomer concentrations was found to be 1.2 order. The relationship between the grafting rate and film thickness gave a negative first order dependence. This grafting system proceeded by a diffusion controlled process. Some selected properties of the grafted films such as mechanical and electrical properties, swelling behaviour, and gel determination, were also investigated.  相似文献   

12.
This work evaluated such a cross-linked chitosan based controlled release device to be later used for sustained drug release. Cross linking was required to control chitosan swelling/deswelling rate. Hexamethylene 1,6-Bis (aminocarboxysulfonate), a bisulfite blocked diisocyanate obtained by the reaction of 1,6 Hexamethylene Diisocyanate and Sodium bisulfite, was used as cross linking agent. Two films formulations were tested: 30 and 50% cross-linked, and they were prepared by solvent evaporation technique. Chitosan cross-linked films were characterized for cross linkage by FTIR, for hydrophilicity by Contact Angle and for swelling behavior by Gravimetric method. Cross linking reaction was confirmed by FTIR. Moreover, cross linking increased the hydrophilic character of cross-linked films and suppressed swelling. However, 30% cross-linked film swollen less than the 50% one, while 50% cross-linked film swollen less than chitosan film itself. This behavior was attributed to the hydrophilic character of the cross linking agent and to the polymeric network formation by cross linking.  相似文献   

13.
Different polymers were investigated with respect to the sorption of solvents and gases. Depending on the chemical nature of the polymers this sorption leads to polymer swelling. The degree of swelling D/D0 was measured utilizing Small angle X-ray scattering (SAXS) as well as Surface plasmon resonance (SPR). From the change in film thickness after swelling in different solvents Hildebrand parameters of the polymers were determined. By crosslinking of the polymer films the degree of swelling can be controlled. In the case of ultra-thin polyimide films a higher degree of crosslinking led to a decreased selectivity of the transport of gases through the membrane. Reptation of macromolecules was also investigated and the influence of polymer swelling in different solvents has a great influence on the selectivity and diffusion coefficient.  相似文献   

14.
本文研究苯乙烯在TiCl_3-Al(C_2H_5)_3催化下于甲苯、正庚烷或甲苯-正庚烷混合物介质中的聚合动力学。提出了一个含催化剂球形聚合物颗粒中发生单体扩散控制聚合的模型,导出的式子统一解释了不同介质中扩散阻力造成的不同程度的速率表减,定量说明了在聚笨乙烯良溶剂中聚合时扩散阻力小于在不良溶剂中时。  相似文献   

15.
为考察不同溶剂对聚醚砜酮(PPESK)炭膜结构和性能的影响,以PPESK为前驱体,分别以NMP,CHCl3,C2H2Cl4,DMAc为溶剂制备气体分离炭膜。并采用红外光谱、热重分析、X射线衍射和气体渗透等测试手段对所制膜的化学结构、炭膜的微结构和气体的分离性能进行了表征。结果表明,溶剂的溶度参数、沸点、挥发性以及原膜中溶剂的含量等导致所制备聚合物膜形成不同的化学结构,改变它在预氧化和炭化过程的结构变化规律,使形成炭膜表现出不同的炭结构、孔隙结构和表观柔韧性,最终影响炭膜的气体渗透性和分离选择性。  相似文献   

16.
Diffusion in a boundary between a polymer+solvent solution and non-solvent was treated by accounting for the presence of the four diffusion coefficients that describe the isothermal transport process in a three component system. Diffusion equations were integrated assuming a concentration dependence of diffusion coefficients that account for the thermodynamic conditions on the cross diffusion terms of Eq. (1). The presence of non-zero cross terms promotes an incongruent diffusion of polymer whose concentration increases at the boundary between the polymer+solvent solution and the non-solvent. Although our model describes diffusion in the range of homogeneous solution, this incongruent polymer diffusion is a process similar to that promoted by the solvent evaporation from the polymer+solvent film that some authors suggested as an intermediate step before the film immersion into the coagulation bath to obtain good asymmetric membranes.  相似文献   

17.

Membrane separator based on the polyvinylidene fluoride (PVDF) is prepared via the non-solvent-induced phase separation (NIPS) method with water and ethanol as non-solvent and a mixture of dimethylformamide (DMF) and acetone as solvent. The effect of various acetone/DMF ratios and non-solvent material on the physical and electrochemical properties of the separator is studied by FE-SEM, tensile strength, electrochemical AC-impedance spectroscopy (EIS), thermal stability, and linear sweep voltammetry (LSV). The charge-discharge studies are carried out by fabricating a lithium foil/polymer electrolyte membrane/LiFePO4 cell. The results show that with the change of solvent and non-solvent, the structure and morphology of the separator change and its physical and electrochemical properties. The results indicate that the membrane sample with non-solvent ethanol, acetone/DMF: 80/20 (wt/wt), and PVDF/PU: 95/5 (wt/wt) shows high porosity (66.3%) and high ionic conductivity (1.34 mS/cm) as well as excellent thermal stability.

  相似文献   

18.
丁酸壳聚糖液晶的临界行为研究   总被引:6,自引:3,他引:6  
用偏光显微镜法测定了丁酸壳聚糖在四种酸性溶剂中的临界浓度值.发现临界浓度值(v/v%)与溶剂的酸性无关,都是16%~17%.在以二氯乙酸为溶剂时,不同丁酰化程度的丁酸壳聚糖有相同的临界浓度.用DSC法测定了丁酸壳聚糖/二氯乙酸体系的临界温度,并绘制了相图.结果表明,浓度达60%(w/w%)后,临界温度基本不再变化,稳定在39℃左右.  相似文献   

19.
Miscible blends of PHB and CAB were prepared by the solvent-casting method with various blend compositions, and their orientation behavior was investigated during uniaxial drawing. X-ray analysis revealed that the orientation of the crystallizable PHB component in the drawn PHB/CAB blends was changed from c-axis-orientation to a-axis-orientation with increasing CAB content. The a-axis-orientation was a result from the a-axis-oriented crystal growth caused by the intramolecular nucleation and the confined crystal growth. For quantitative assessment of the chain orientation, the Hermans orientation functions of the two respective components were obtained from the polarized FT-IR measurements. The orientation function of pure PHB stretched to 5 times of its initial length was approximately 0.8. However the value decreased rapidly with increasing CAB content, and it turned to a negative value from 30 wt.-% CAB content. This indicates that the PHB chains were aligned perpendicular to the drawing direction. On the contrary, the value of the CAB component remained almost unchanged at about 0.1 regardless of the blend composition and the annealing time, indicating that the CAB chains were constantly oriented parallel to the drawing direction without any chain relaxation. In addition, SAXS analysis suggested that the lamellar stacking direction also changed from parallel to perpendicular in the stretching direction with increasing CAB content.  相似文献   

20.
In this work, a new class of totally organic fluorescent nanogel particles and their exceptionally specific behaviors based on their unique structures are introduced, which draws a sharp line from conventional fluorophore-doped and fluorophore-branched-type particles. The nanogel particles, the diameter of which could be controlled by adjusting reaction conditions, such as the solvent system, were spontaneously fabricated with a spherical shape by direct polymerization of non-heterocyclic aromatic compounds, such as 2,6-dihydroxyanthracene, 2,6-dihydroxynaphthalene, and 9,9-bis(4-hydroxyphenyl)fluorene with triazinane as the cross-linker. A fluorophoric moiety formed from a polymer main chain was realized in the particle, and consequently, the resultant content of the fluorophoric moiety was around 70–80 wt % per particle. The uniqueness and versatility of the particles can be emphasized by their good compatibility with various solvents due to their amphiphilic and ampholytic swelling properties, but also by their remarkable fluorescent solvatochromism in the dispersion state. Furthermore, these behaviors were preserved even in their polymer composite system. This study also demonstrates that various fluorescent polymer films can be fabricated with emission color control due to memorization of the solvatochromism phenomenon of the dispersed fluorescent nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号