首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a new flow regime transition model is proposed for two-phase flows in a vertical annulus. Following previous works, the flow regimes considered are bubbly (B), slug (S) or cap-slug (CS), churn (C) and annular (A). The B to CS transition is modeled using the maximum bubble package criteria of small bubbles. The S to C transition takes place for small annulus perimeter flow channels and it is assumed to occur when the mean void fraction over the entire region exceeds that over the slug–bubble section. If the annulus perimeter is larger that the distorted bubble limit the cap-slug flow regime will be considered since in these conditions it is not possible to distinguish between cap and partial-slug bubbles. The CS to C transition is modeled using the maximum bubble package criteria. However, this transition considers the coalescence of cap and spherical bubbles in order to take into account the flow channel geometry. Finally, the C to A transition is modeled assuming two different mechanisms, (a) flow reversal in the liquid film section along large bubbles; (b) destruction on liquid slugs or large waves by entrainment or deformation. In the S to C and C to A flow regime transitions the annulus flow channel is considered as a rectangular flow channel with no side walls. In all the modeled transitions the drift-flux model is used to obtain the final correlations. The final equations for every flow regime transition are easy to be implemented in computational codes and not experimental input is needed. The prediction accuracy of the newly developed model has been checked against air–water as well as boiling flow regime maps. In all the cases, the new developed model shows better predicting capabilities than the existing correlations most used in literature.  相似文献   

2.
Flow regime transition criteria are of practical importance for two-phase flow analyses at reduced gravity conditions. Here, flow regime transition criteria which take the frictional pressure loss effect into account were studied in detail. Criteria at reduced gravity conditions were developed by extending an existing model from normal gravity to reduced gravity conditions. A comparison of the newly developed flow regime transition criteria model with various experimental datasets taken at microgravity conditions showed satisfactory agreement. Sample computations of the model were performed at various gravity conditions, such as 0.196, 1.62, 3.71 and 9.81 m/s2 corresponding to micro-gravity and lunar, Martian and Earth surface gravity, respectively. It was found that the effect of gravity on bubbly–slug and slug–annular (churn) transitions in a two-phase flow system was more pronounced at low liquid flow conditions, whereas the gravity effect could be ignored at high mixture volumetric flux conditions. While for the annular flow transitions due to flow reversal and onset of droplet entrainment, higher superficial gas velocity was obtained at higher gravity level.  相似文献   

3.
This paper presents experimental investigations on nitrogen/non-Newtonian fluid two-phase flow in vertical noncircular microchannels, which have square or triangular cross-section with the hydraulic diameters being Dh = 2.5, 2.886 and 0.866 mm, respectively, by visualization method. Three non-Newtonian aqueous solutions with typical rheological properties, i.e., 0.4% carboxymethyl cellulose (CMC), 0.2% polyacrylamide (PAM) and 0.2% xanthan gum (XG) are chosen as the working fluids. The common flow patterns are identified as slug flow, churn flow and annular flow. The dispersed bubble flow is only found in the case with nitrogen/CMC solution two-phase flow in the largest channel. A new flow pattern of nitrogen/PAM solution two-phase flow, named chained bubble/slug flow, is observed in all the test channels. The flow regime maps are also developed and the results show that the rheological properties of the non-Newtonian fluid have remarkable influence on the flow pattern transitions. The geometrical factors of the microchannel such as the cross-section shape and hydraulic diameter of the channel can also affect the flow regime map. Finally, the results obtained in this work are compared with the available flow pattern transitions.  相似文献   

4.
To utilize the advantageous properties of two-phase flow in microgravity applications, the knowledge base of two-phase flow phenomena must be extended to include the effects of gravity. In the experiment described, data regarding the behavior of two-phase flow in a conduit under microgravity conditions (essentially zero gravity) are explored. Of particular interest, knowledge of the void fraction of the gas and liquid in a conduit is necessary to develop models for heat and mass transfer, pressure drop, and wall shear. An experiment was conducted under reduced gravity conditions to collect data by means of a capacitance void fraction sensor and high speed visual imagery. Independent parameters were varied to map the flow regime regions. These independent parameters include gas and liquid volumetric flow rates and saturation pressures. Void fraction measurements were taken at a rate of 100 Hz with six sensors at two locations along the conduit. Further, statistical parameters were developed from the void fraction measurements. Statistical parameters such as variance, signal-to-noise ratio, half height value, and linear area difference were calculated and found to have characteristics allowing flow regime identification.  相似文献   

5.
Flow regime diagrams for gas-solid fluidization and upward transport   总被引:9,自引:0,他引:9  
Flow regime maps are presented for gas-solids fluidized beds and gas-solids upward transport lines. For conventional gas solids fluidization, the flow regimes include the fixed bed, bubbling fluidization, slugging fluidization and turbulent fluidization. For gas solids vertical transport operation, solids flux must be incorporated in the flow regime diagrams. The flow regimes then include dilute-phase transport, fast fluidization or turbulent flow, slug/bubbly flow, bubble-free dense-phase flow and packed bed flow. In practical circulating fluidized beds and transport risers, operation below the fast fluidization regime is commonly impossible due to equipment limitations. Practical flow regime maps are proposed with the flow regimes, including homogeneous dilute-phase flow, core-annular dilute-phase flow (where there are appreciable lateral gradients but small axial gradients) and fast fluidization (where there are both lateral and axial gradients). The boundary between fast fluidization and dilute-phase pneumatic transport is set by the type A choking velocity, at which the uniform suspension collapses and particles start to accumulate in the bottom region of the transport line, while the mechanism of transition from fast fluidization to dense-phase flow depends on the column and particle diameters.  相似文献   

6.
In order to investigate the fluctuation characteristics of two-phase flow splitting at a T-junction, particular attention was paid on Churn flow which had the strongest fluctuation comparing with bubble flow and annular flow. The main tube of the T-junction was vertical and the two branches were horizontal. All three pipes connecting to the junction were of 15 mm inner diameter. A statistical analysis based on Root Mean Square (RMS) was applied to temporal differential pressure signals and gas flow rate signals. The Power Spectral Density (PSD) was also employed to reveal their peculiar features in frequency domain as well. The effects of the extraction flow ratio and the gas and liquid superficial velocity upstream on fluctuation characteristics of gas-liquid two-phase flow splitting at the T-junction were investigated in detail. It is found that there is a wide fluctuation in both differential pressure and gas flow rate downstream at every extraction ratio (W3/W1) and the fluctuation intensity increases as W3/W1 increasing. It is also made clear that increasing either water superficial velocity or gas superficial velocity in inlet causes fluctuation to become more intensive.  相似文献   

7.
Flow pattern, void fraction and slug rise velocity on counter-current two-phase flow in a vertical round tube with wire-coil inserts are experimentally studied. Flow pattern and slug rise velocity are measured visually with a video camera. The void fraction is measured by the quick-closing valve method. Four kinds of coils with different coil pitches and coil diameters are used as inserts. The presence of wire-coil inserts induces disturbance into gas and liquid flows so that the shape and motion of gas slug or bubbles in a wire-coil inserted tube are quite different from those observed in a smooth tube without insert. The bubbly flow occurs in the low gas superficial velocity region in the wire-coil inserted tube, while the slug or churn/annular flow only appears in the smooth tube without insert over the all test range. The measured slug rise velocity in the wire-coil inserted tube is higher than that in the smooth tube. With modified mean flow velocity calculated with core area, the slug rise velocity in wire-coil tube inserted is in good agreement with Nicklin's correlation. The void fraction in a wire-coil inserted tube is lower than that in a smooth tube in the range of high gas superficial velocities. By introducing a simple assumption on considering the effective flowing area, the measured void fractions in a wire-coil inserted tube are in relatively good agreement with the predicted result based on the drift flux model proposed by others with the correlation for slug rise velocity given by others when the coil pitch is dense.  相似文献   

8.
This paper presents flow map investigations of adiabatic two-phase flow in square cross-sectioned, 200 μm deep microchannels fabricated in silicon, employing laser induced fluorescence microscopy. The influence of surface tension and nozzle geometry on the flow pattern transition was investigated using two nozzle widths (orifices of 30 μm and 50 μm, respectively) and methanol–water solutions with CO2 as the gas phase. It was found and quantified that smaller nozzle geometries and smaller liquid surface tension promote the propagation of capillary gas bubbles at lower superficial gas and liquid velocities. Within the measurement domain of superficial gas (0.01–0.625 m/s) and liquid (0.0005–0.5000 m/s) velocities, we observed dispersed bubbly, regularly ordered bubbly, wedging, slug and annular flows, thus extending the experimental knowledge base to smaller superficial liquid velocities by almost two orders of magnitude. With the help of the flow maps presented herein, we were able to characterize the observed regularly ordered bubbly flow as the transition regime between dispersed bubbly and wedging flow. The results of the present investigation are of direct relevance to the operation of small-scale direct methanol fuel cells.  相似文献   

9.
Flow patterns, the pressure drag reduction and the heat transfer in a vertical upward air–water flow with the surfactant having negligible environmental impact were studied experimentally in a tube of 2.5 cm in diameter. Visual observations showed that gas bubbles in the air–water solution with surfactant are smaller in size but much larger in number than in pure air–water mixture, at the all flow regimes. The transition lines in the flow regime map for the solution of air–water mixture with surfactant of the 300 ppm concentration are mainly consistent with the experimental data obtained in clear air–water mixture. An additive of surfactant to two-phase flow reduces the total pressure drop and decrease heat transfer, especially in the churn flow regime.  相似文献   

10.
In this paper, a new two-fluid two-component computational fluid dynamics (CFD) model is developed to simulate vertical upward two-phase annular flow. The two-phase VOF scheme is utilized to model the roll wave flow, and the gas core is described by a two-component phase consisting of liquid droplets and gas phase. The entrainment and deposition processes are taken into account by source terms of the governing equations. Unlike the previous models, the newly developed model includes the effect of liquid roll waves directly determined from the CFD code, which is able to provide more detailed and, the most important, more self-standing information for both the gas core flow and the film flow as well as their interactions. Predicted results are compared with experimental data, and a good agreement is achieved.  相似文献   

11.
Accurate measurements of the interfacial wave structure of upward annular two-phase flow in a vertical pipe were performed using a laser focus displacement meter (LFD). The purpose of this study was to clarify the effectiveness of the LFD for obtaining detailed information on the interfacial displacement of a liquid film in annular two-phase flow and to investigate the effect of axial distance from the air–water inlet on the phenomena. Adiabatic upward annular air–water flow experiments were conducted using a 3 m long, 11 mm ID pipe. Measurements of interfacial waves were conducted at 21 axial locations, spaced 110 mm apart in the pipe. The axial distances from the inlet (z) normalized by the pipe diameter (D) varied over z/D = 50–250. Data were collected for predetermined gas and liquid flow conditions and for Reynolds numbers ranging from ReG = 31,800 to 98,300 for the gas phase and ReL = 1050 to 9430 for the liquid phase. Using the LFD, we obtained such local properties as the minimum thickness, maximum thickness, and passing frequency of the waves. The maximum film thickness and passing frequency of disturbance waves decreased gradually, with some oscillations, as flow developed. The flow development, i.e., decreasing film thickness and passing frequency, persisted until the end of the pipe, which means that the flow might never reach the fully developed state. The minimum film thickness decreased with flow development and with increasing gas flow rate. These results are discussed, taking into account the buffer layer calculated from Karman’s three-layer model. A correlation is proposed between the minimum film thickness obtained in relation to the interfacial shear stress and the Reynolds number of the liquid.  相似文献   

12.
A new method to pattern recognition of gas–liquid two-phase flow regimes based on improved local binary pattern (LBP) operator is proposed in this paper. Five statistic features are computed using the texture pattern matrix obtained from the improved LBP. The support vector machine and back-propagation neural network are trained to flow pattern recognition of five typical gas–liquid flow regimes. Experimental results demonstrate that the proposed method has achieved better recognition accuracy rates than others. It can provide reliable reference for other indirect measurement used to analyze flow patterns by its physical objectivity.  相似文献   

13.
In this paper we develop an approach to design a three-phase, gas–solid–liquid flow system that transports pneumatically scarified solid particles, including sticky ones, through a vertical pipe. The proposed system permits the introduction and maintenance of a liquid film that coats the pipe’s inner wall and acts as a lubricant that ensures sticky particles continue to move upward without permanently adhering to the pipe wall. The system’s operating conditions fall within the boundaries of the annular dispersed region on a typical flow pattern map of vertical flow of a gas–liquid mixture. High gas superficial velocities combined with low liquid superficial velocities characterize such a region. A combination of a modified one-dimensional, two-fluid annular dispersed flow model and a one-dimensional pneumatic conveying model is shown to describe this transport process satisfactorily. Solution of the combined models produces all the necessary design parameters including power requirements and superficial velocities of the two-fluid media needed to transport a given amount of solid particles. Results of model calculations are compared with rare three-phase flow data obtained prior to the development of the present model, by an independent experimental team that used the physical conditions of the present approach. Reasonable agreement justifies the use of the combined model for engineering design purposes.  相似文献   

14.
15.
The liquid turbulence structure of air–water bubbly flow in a 200 mm diameter vertical pipe was experimentally investigated. A dual optical probe was used to measure the bubble characteristics, while the liquid turbulence was measured using hot-film anemometry. Experiments were performed at two liquid superficial velocities of 0.2 and 0.68 m/s for gas superficial velocities in the range of 0–0.18 m/s, corresponding to an area averaged void fraction up to 13.6%. In general, there is an increase in the liquid turbulence energy when the bubbles are introduced into the liquid flow. The increase in the energy mainly occurs over a range of length scales that are on the order of the bubble diameter. A suppression of the turbulence was observed close to the wall at very low void fraction flows. Initially, the suppression occurs in the low wave number range and then extends to higher wave numbers as the suppression is increased.  相似文献   

16.
17.
In this work, a new method is proposed to determine the two-phase flow regime based on the capacitance trace of the flow. The experimental data set contains 123 capacitance traces measured for a horizontal tube with an inner diameter of 8 mm. The tested refrigerant is R134a. The mass flux is varied between 200 and 500 kg/m2 s and the vapour quality x is varied between 0 and 1. For each capacitance signal the wavelet variance is estimated based on the maximum overlap wavelet transform of the signal. The used wavelet function is a D8 wavelet of the Daubechies family. A feature space is generated based on the wavelet variance values associated with frequencies below 100 Hz. Principal component analysis and linear discriminant analysis are subsequently applied to this raw feature space, after which the Fuzzy c-means clustering algorithm is used to divide the feature space into clusters corresponding to different flow regimes. The resulting flow regime assignment shows a good agreement with a visual classification of the data set based on flow visualisations. Finally, the classification was performed based on variable training data to show the robustness of the method.  相似文献   

18.
Gas-particle two-phase turbulent flow in a vertical duct   总被引:5,自引:0,他引:5  
Two-phase gas-phase turbulent flows at various loadings between the two vertical parallel plates are analyzed. A thermodynamically consistent turbulent two-phase flow model that accounts for the phase fluctuation energy transport and interaction is used. The governing equation of the gas-phase is upgraded to a two-equation low Reynolds number turbulence closure model that can be integrated directly to the wall. A no-slip boundary condition for the gas-phase and slip-boundary condition for the particulate phase are used. The computational model is first applied to dilute gas-particle turbulent flow between two parallel vertical walls. The predicted mean velocity and turbulence intensity profiles are compared with the experimental data of Tsuji et al. (1984) for vertical pipe flows, and good agreement is observed. Examples of additional flow properties such as the phasic fluctuation energy, phasic fluctuation energy production and dissipation, as well as interaction momentum and energy supply terms are also presented and discussed.

Applications to the relatively dense gas-particle turbulent flows in a vertical channel are also studied. The model predictions are compared with the experimental data of Miller & Gidaspow and reasonable agreement is observed. It is shown that flow behavior is strongly affected by the phasic fluctuation energy, and the momentum and energy transfer between the particulate and the fluid constituents.  相似文献   


19.
Experimental results of adiabatic boiling of water flowing through a fractal-like branching microchannel network are presented and compared to numerical model simulations. The goal is to assess the ability of current pressure loss models applied to a bifurcating flow geometry. The fractal-like branching channel network is based on channel length and width ratios between adjacent branching levels of 2−1/2. There are four branching sections for a total flow length of 18 mm, a channel height of 150 μm and a terminal channel width of 100 μm. The channels were Deep Reactive Ion Etched (DRIE) into a silicon disk. A Pyrex disk was anodically bonded to the silicon to form the channel top to allow visualization of the flow within the channels. The flow rates ranged from 100 to 225 g/min and the inlet subcooling levels varied from 0.5 to 6 °C. Pressure drop along the flow network and time averaged void fraction in each branching level were measured for each of the test conditions. The measured pressure drop ranged from 20 to 90 kPa, and the measured void fraction ranged from 0.3 to 0.9. The measured pressure drop results agree well with separated flow model predictions accounting for the varying flow geometry. The measured void fraction results followed the same trends as the model; however, the scatter in the experimental results is rather large.  相似文献   

20.
Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air–water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam–water annular flow conditions. In each experiment, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using the liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant [Sawant, P.H., Ishii, M., Mori, M., 2008. Droplet entrainment correlation in vertical upward co-current annular two-phase flow. Nucl. Eng. Des. 238 (6), 1342–1352] for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible.Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air–water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air–water, helium–water and air–genklene experimental data measured by Willetts [Willetts, I.P., 1987. Non-aqueous annular two-phase flow. D.Phil. Thesis, University of Oxford]. However, comparison of the correlations with the steam–water data available in literature showed significant discrepancies. It is proposed that these discrepancies might have been caused due to the inadequacy of the liquid film extraction method used to measure the entrainment fraction or due to the change in mechanism of entrainment under high liquid flow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号