首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in-tube cooling flow and heat transfer characteristics of R134a at supercritical pressures are measured experimentally for various pressures and mass fluxes in a horizontal tube. The tube is made of stainless steel with an inner diameter of 4.01 mm. Experiments are conducted for mass fluxes from 70 kg/m2 s to 405 kg/m2 s and pressures from 4.5 MPa to 5.5 MPa. The inlet refrigerant temperature is from 80 °C to 140 °C. The results show that the refrigerant temperature, the mass flux and the pressure all significantly affect the flow and heat transfer characteristics of R134a at supercritical pressures. The experimentally measured frictional pressure drop and heat transfer coefficient are compared with predicted results from several existing correlations. The comparisons show that the predicted frictional pressure drop using Petrov and Popov’s correlation accounting for the density and viscosity variations agree well with the measured data. Gnielinski’s correlation for the heat transfer coefficient agrees best with the measured data with deviations not exceeding 25%, while correlations based on supercritical CO2 heat transfer data overcorrect for the influence of the thermophysical property variations resulting in larger deviations. A new empirical correlation is developed based on the measured results by modifying Gnielinski’s equation with thermophysical property terms including both the property variations from the inlet to the outlet of the entire test section and from the bulk to the wall. Most of the experimental data is predicted by the new correlation within a range of 15%.  相似文献   

2.
Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m2 s), and inner wall heat flux from 130 to 720 kW/m2. The wall temperature distribution and pressure drop in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of Departure from Nucleate Boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler.  相似文献   

3.
An experimental study of evaporation heat transfer coefficients for single circular small tubes was conducted for the flow of C3H8, NH3, and CO2 under various flow conditions. The test matrix encompasses the entire quality range from 0.0 to 1.0, mass fluxes from 50 to 600 kg m−2 s−1, heat fluxes from 5 to 70 kW m−2, and saturation temperatures from 0 to 10 °C. The test section was made of circular stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm, and a length of 2000 mm in a horizontal orientation. The test section was uniformly heated by applying electric power directly to the tubes. The effects of mass flux, heat flux, saturation temperature, and inner tube diameter on the heat transfer coefficient are reported. Among the working refrigerants considered in this study, CO2 has the highest heat transfer coefficient. Laminar flow was observed in the evaporative small tubes, and was considered in the modification of boiling heat transfer coefficients and pressure drop correlations.  相似文献   

4.
Saturated flow boiling of environmentally acceptable nonionic surfactant solutions of Alkyl (8–16) was compared to that of pure water. The concentration of surfactant solutions was in the range of 100–1000 ppm. The liquid flowed in an annular gap of 2.5 and 4.4 mm between two vertical tubes. The heat was transferred from the inner heated tube to two-phase flow in the range of mass flux from 5 to 18 kg/m2 s and heat flux from 40 to 200 kW/m2. Boiling curves of water were found to be heat flux and channel gap size dependent but essentially mass flux independent. An addition of surfactant to the water produced a large number of bubbles of small diameter, which, at high heat fluxes, tend to cover the entire heater surface with a vapor blanket. It was found that the heat transfer increased at low values of relative surfactant concentration C/C0, reaches a maximum close to the value of C/C0 = 1 (where C0 = 300 ppm is the critical micelle concentration) and decreased with further increase in the amount of additive. The dependence of the maximal values of the relative heat transfer enhancement, obtained at the value of relative concentration of C/C0 = 1, on the boiling number Bo may be presented as single curve for both gap sizes and the whole range of considered concentrations.  相似文献   

5.
Critical heat flux (CHF) experiments using deionized water as working fluid have been conducted in a range of pressure from 0.6 to 4.2 MPa, mass flow velocity from 60 to 130 kg/ms and wall heat flux from 10 to 90 kW/m2 for vertical narrow annuli with annular gap sizes of 0.95 and 1.5 mm. We found that the CHF, occurring only on the inside tube, or on the outside tube or on both tubes of the annular channel, depends on the heat flux ratio between surfaces of the outside and inside tubes. The CHF, occurring on the surface of the inside tube, reaches the maximum value under the pressure of 2.3 MPa while it occurring on the surface of the outside tube keeps increasing with the increase of the pressure. The CHF, occurring on the inside or outside tubes, increases with the increase of the mass flow velocity and the annular gap size; and decreases with the increase of critical quality and the other tube wall heat flux. Empirical correlations, which agree quite well with the experimental data, have been developed to predict the CHF occurring on surfaces of the inside or outside tubes of the narrow annular channel on the conditions of low pressure and low flow.  相似文献   

6.
Reactor core of a SCWR (supercritical water-cooled reactor) employs a tight lattice in order to efficiently remove heat from nuclear fuels. In the narrow sub-channels of a tight lattice reactor core, a helical wire instead of a complicated conventional spacer has been used as a turbulence generator and a space-keeper between the fuel rods.A series of experiments were performed in order to investigate an effect of a helical wire on heat transfer to upwardly flowing CO2 in a electrically-heated circular tube with an inner diameter of 6.32 mm, where a helical wire with an outer diameter of 1.3 mm was tightly inserted inside the tube. The tube inner diameter corresponds to the equivalent hydraulic diameter of a sub-channel of a KAERI’s fuel assembly concept. The mass fluxes ranged from 400 to 1200 kg/m2 s; the heat fluxes ranged from 30 to 90 kW/m2; and the pressures were 7.75 and 8.12 MPa. The corresponding Reynolds numbers at the test section inlet ranged from 1.8 × 104 to 7.5 × 104. The heat transfer rate reached almost twice the value obtained from the experiment with a plain tube of the same size near the pseudocritical temperature and the effect of a wire was attenuated as the temperature moved away from the pseudocritical temperature. The wall temperature distribution along the span between the contact points was a concave downward parabola. Near the pseudocritical temperature, the wall temperature showed relatively higher values, indicating a stagnant fluid around the wire. On the other hand, the wall temperature at the contact point showed a relatively lower value, indicating a fin function of a wire.  相似文献   

7.
This paper presents new experimental results for saturated nucleate boiling of FC72 and FC87 on a horizontal copper disc, at atmospheric pressure, for different degrees of confinement, s, in the range of 0.1-13 mm, and with two kinds of confining element, for low and moderated heat fluxes (?40 kW/m2), on both a downward and an upward facing heating surface. For low heat flux a decrease of the confinement gap causes an enhancement of the boiling and a decrease in the dryout heat flux. A visualization of the boiling phenomenon shows the effect of confinement and heat flux on the liquid-vapor configuration.  相似文献   

8.
Time resolved Particle Tracking Velocimetry (PTV) experiments were carried out to investigate turbulent, subcooled boiling flow of refrigerant HFE-301 through a vertical rectangular channel with one heated wall. Measurements were performed with liquid Reynolds numbers (based on the hydraulic diameter) of Re = 3309, 9929 and 16,549 over a wall heat flux range of 0.0–64.0 kW/m2. Turbulence statistics are inferred from PTV full-field velocity measurements. Quantities such as: instantaneous 2D velocity fields, time-averaged axial and normal velocities, axial and normal turbulence intensities, and Reynolds stresses are obtained. The present results agree well with previous studies and provides new information due to the full-field nature of the technique. This work is an attempt to provide turbulent subcooled boiling flow data for validation and improvement of two-phase flow computational models.  相似文献   

9.
This paper experimentally investigates flow boiling characteristics in a cross-linked microchannel heat sink at low mass fluxes and high heat fluxes. The heat sink consists of 45 straight microchannels each with a hydraulic diameter of 248 μm and heated length of 16 mm. Three cross-links, of width 500 μm, are introduced in the present microchannel heat sink to achieve better temperature uniformity and to avoid flow mal-distribution. Flow visualization, flow instability, two-phase pressure drop, and two-phase heat transfer measurements are conducted using the dielectric coolant FC-72 over a range of heat flux from 7.2 to 104.2 kW/m2, mass flux from 99 to 290 kg/m2 s, and exit quality from 0.01 to 0.71. Thermochromic liquid crystals are used in the present study as full-field surface temperature sensors to map the temperature distribution on the heat sink surface. Flow visualization studies indicate that the observed flow regime is primarily slug. Visual observations of flow patterns in the cross-links demonstrate that bubbles nucleate and grow rapidly on the surface of the cross-links and in the tangential direction at the microchannels’ entrance due to the effect of circulations generated in those regions. The two-phase pressure drop strongly increases with the exit quality, at xe,o < 0.3, and the two-phase frictional pressure drop increases by a factor of 1.6–2 compared to the straight microchannel heat sink. The flow boiling heat transfer coefficient increases with increasing exit quality at a constant mass flux, which is caused by the dominance of the nucleation boiling mechanism in the cross-link region.  相似文献   

10.
Natural convection boiling of water and surfactant solutions in a confined space between two vertical plates was studied experimentally in the range of heat flux 19–170 kW/m2. The surfactant used was Alkyl (8–16) Glucoside having negligible environmental impact. The gap size was changed in the range of s = 1–80 mm, the concentration of surfactant solutions was changed in the range of C = 200–600 ppm. Generally, an addition of surfactant leads to an enhancement of heat transfer compared to water boiling at the same gap size. Enhancement of the heat transfer depending on the solution concentration at fixed gap size yields maximum value at the solution concentration close to the critical micelle concentration. The effect of confined space on a bubble dynamic was studied. Temperature field on the heater was determined using the infrared thermography technique. Quasi periodic wall temperature fluctuations were observed in the regime of high heat flux. An increase in the Bond number leads to an increase in the dimensionless frequency of the heated wall temperature fluctuations. The correlation between the dimensionless parameter of heat transfer and the Bond number under condition of quasi periodic boiling was derived and discussed.  相似文献   

11.
An experimental investigation has been carried out to study the heat transfer characteristics during evaporation of R-134a inside a single helical microfin tube. The microfin tube has been provided with different tube inclination angles of the direction of fluid flow from horizontal, α. The experiments were performed for seven different tube inclinations, α, in a range of −90° to +90° and four mass velocities of 53, 80, 107 and 136 kg/m2 s for each tube inclination angle during evaporation of R-134a. The results demonstrate that the tube inclination angle, α, affects the boiling heat-transfer coefficient in a significant manner. For all refrigerant mass velocities, the best performing tube is that having inclination angle of α = +90°. The effect of tube inclination angle, α, on heat-transfer coefficient, h, is more prominent at low vapor quality and mass velocity. An empirical correlation has also been developed to predict the heat-transfer coefficient during flow boiling inside a microfin tube with different tube inclinations.  相似文献   

12.
This paper presents the results of an experimental study carried out with R-134a during flow boiling in a horizontal tube of 2.6 mm ID. The experimental tests included (i) heat fluxes in the range from 10 to 100 kW/m2, (ii) the refrigerant mass velocities set to the discrete values in the range of 240-930 kg/(m2 s) and (iii) saturation temperature of 12 and 22 °C. The study analyzed the heat transfer, through the local heat transfer coefficient along of flow, and pressure drop, under the variation of these different parameters. It was possible to observe the significant influence of heat flux in the heat transfer coefficient and mass velocity in the pressure drop, besides the effects of saturation temperature. In the low quality region, it was possible to observe a significant influence of heat flux on the heat transfer coefficient. In the high vapor quality region, for high mass velocities, this influence tended to vanish, and the coefficient decreased. The influence of mass velocity in the heat transfer coefficient was detected in most tests for a threshold value of vapor quality, which was higher as the heat flux increased. For higher heat flux the heat transfer coefficient was nearly independent of mass velocity. The frictional pressure drop increased with the increase in vapor quality and mass velocity. Predictive models for heat transfer coefficient in mini channels were evaluated and the calculated coefficient agreed well with measured data within a range 35% for saturation temperature of 22 °C. These results extend the ranges of heat fluxes and mass velocities beyond values available in literature, and add a substantial contribution to the comprehension of boiling heat transfer phenomena inside mini channels.  相似文献   

13.
Experiments were conducted to investigate flow boiling heat transfer to a dielectric fluid in a silicon chip-integrated microchannel heat sink. Twenty-four microchannels, each 389 μm × 389 μm in cross-section, were fabricated into the 12.7 mm × 12.7 mm silicon substrate. High-speed visualizations (at 12,500 frames per second) were performed simultaneously with heat transfer and pressure drop measurements to investigate the physics of flow boiling in parallel microchannel arrays. At low heat fluxes, bubbly flow is dominant, with the bubbles coalescing to form vapor slugs as the heat flux is increased. At high heat fluxes, the flow regimes in the downstream portion of the microchannels are characteristic of alternating wispy-annular flow and churn flow, while flow reversal is observed in the upstream region near the microchannel inlet. Local heat transfer measurements, obtained at three flow rates ranging from 35 to 60 ml/min, show that at lower heat fluxes, the heat transfer coefficient increases with increasing heat flux. The heat transfer coefficient in fully developed boiling is seen to be independent of flow rate in this range. At higher heat fluxes (exceeding 542, 673, 730 kW/m2, respectively, for flow rates of 35, 47 and 60 ml/min), this trend is reversed, and the heat transfer coefficient decreases with further increases in heat flux due to partial dryout in some of the microchannels. Heat fluxes at which fully developed boiling is achieved depend on the flow rate. The pressure drop in fully developed boiling increases with increasing heat flux and is independent of flow rate for the test conditions considered in this work.  相似文献   

14.
The objective of the present study is to analyze the heat transfer correlations of supercritical CO2 cooled in horizontal circular tubes. In the paper, heat transfer correlations are first reviewed and compared with the experimental data at different heat fluxes. The results show that most of the previous correlations agree well with the experimental data under lower heat flux, but fail to predict the heat transfer coefficient well when the heat flux is as high as 33 kW/m2. The study of buoyancy effect on convective heat transfer shows that buoyancy effect significantly affects the heat transfer with the increase of heat flux, and both free and forced convections operate in the turbulence flow during supercritical CO2 cooling process. The influencing factors on heat transfer coefficient are summarized and the new correlation can be developed with the four dimensionless numbers.  相似文献   

15.
In the present study, new experimental data are presented for literature on the prediction of film thickness and identification of flow regime during the co-current downward condensation in a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm. R134a and water are used as working fluids in the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments are done at mass fluxes of 300 and 515 kg m?2 s?1. The condensing temperatures are between 40 and 50 °C; heat fluxes are between 12.65 and 66.61 kW m?2. The average experimental heat transfer coefficient of the refrigerant HFC-134a is calculated by applying an energy balance based on the energy transferred from the test section. A mathematical model by Barnea et al. based on the momentum balance of liquid and vapor phases is used to determine the condensation film thickness of R134a. The comparative film thickness values are determined indirectly using relevant measured data together with various void fraction models and correlations reported in the open literature. The effects of heat flux, mass flux, and condensation temperature on the film thickness and condensation heat transfer coefficient are also discussed for the laminar and turbulent flow conditions. There is a good agreement between the film thickness results obtained from the theoretical model and those obtained from six of 35 void fraction models in the high mass flux region of R134a. In spite of their different valid conditions, six well-known flow regime maps from the literature are found to be predictive for the annular flow conditions in the test tube in spite of their different operating conditions.  相似文献   

16.
The objective of this study is to visualize the transient flow patterns and heat transfer behaviors at low mass fluxes and high heat fluxes. The silicon chip consists of the intercrossed microchannel array with 10 triangular microchannels with the hydraulic diameter of 155.4 μm, and five transverse trapezoid microchannels, separating the triangular microchannels into six independent zones. The chip is horizontally positioned. Liquid acetone is used as the working fluid. Tests were performed in the range of mass flux 40–80 kg/m2 s and heat flux 107–216 kW/m2.  相似文献   

17.
This article presents experiments conducted with two single rectangular mini-channels of same hydraulic diameter (1.4 mm) and different aspect ratios for conditions of horizontal boiling flow. The Forane® 365 HX used was subcooled (ΔTsub = 15 °C) for all the boiling curves presented in the paper. Local heat transfer coefficients were measured for heat flux ranging from 25 to 62 kW m−2 and mass flux from 200 kg m−2 s−1 to 400 kg m−2 s−1. The boiling flows were observed with two different cameras (depending on the flow velocity) through a visualization window. The flow patterns in the two channels were compared for similar conditions. The results show that the boiling heat transfer coefficient and the pressure drop values are different for the two single mini-channels. For low heat flux condition, the channel with lowest aspect ratio (H/W = 0.143) has a higher heat transfer coefficient. On the other hand, for high heat flux condition, the opposite situation occurs, namely the heat transfer coefficient becomes higher for the channel with highest aspect ratio (H/W = 0.43). This is probably due to the earlier onset of dryout in the channel with lowest aspect ratio. For the two cases of heating, the pressure drop for the two-phase flow remains lower for the channel with lowest aspect ratio. These results show that the aspect ratio plays a substantial role for boiling flows in rectangular channels. As for single-phase flows, the heat transfer characteristics are significantly influenced (even though the hydraulic diameter remains the same) by this parameter.  相似文献   

18.
The flow boiling heat transfer characteristics of R134a in the multiport minichannel heat exchangers are presented. The heat exchanger was designed as the counter flow tube-in-tube heat exchanger with refrigerant flowing in the inner tube and hot water in the gap between the outer and inner tubes. Two inner tubes were made from extruded multiport aluminium with the internal hydraulic diameter of 1.1 mm for 14 numbers of channels and 1.2 mm for eight numbers of channels. The outer surface areas of two inner test sections are 5979 mm2 and 6171 m2, while the inner surface areas are 13,545 mm2 and 8856 mm2 for 14 and eight numbers of channels, respectively. The outer tube of heat exchanger was made from circular acrylic tube with an internal hydraulic diameter of 25.4 mm. The experiments were performed at the heat fluxes between 15 and 65 kW/m2, mass flux of refrigerant between 300 and 800 kg/m2 s and saturation pressure ranging from 4 to 6 bar. For instance the boiling curve, average heat transfer coefficients are discussed. The comparison results of two test sections with different the number of channels are investigated. The results are also compared with nine existing correlations. The new correlation for predicting the heat transfer coefficient was also proposed.  相似文献   

19.
The wall void peaking distribution observed in an upward turbulent bubbly boundary layer along a flat plate is generated by bubbles that move towards the plate, come into contact with the wall and then slide along it. This transverse ‘migration’ has been studied using flow visualization, high speed video and particle tracking techniques to measure the trajectories of mono-disperse air bubbles at very low void fractions. Investigations have been performed at four Reynolds numbers in the range 280 < Reθ < 3000, covering both the laminar and turbulent regimes, with mono-disperse bubbles of mean equivalent diameter between 2 mm and 6 mm. Lagrangian statistics calculated from hundreds of trajectories show that the migration only occurs in the turbulent regime and for bubble diameters below some critical value: 3.5 mm < deqcrit < 4 mm. Above this size (We > 3), the interface deformation is such that bubbles do not remain at the wall, even when they are released at the surface. Also, bubble migration is shown to be non-systematic, to have a non-deterministic character in the sense that trajectories differ significantly, to increase with Reynolds number and to take place on a short time scale. A series of experiments with isolated bubbles demonstrates that these results are not influenced by bubble–bubble interactions and confirm that two-way coupling in the flow is limited. Flow visualizations show that the migration originates with the capture of bubbles inside the large turbulent structures of the boundary layer (‘bulges’). The bubbles begin to move towards the wall as they cross these structures, and the point at which they reach the wall is strongly correlated with the position of the deep ‘valleys’ which separate the turbulent ‘bulges’. The analysis of the mean Lagrangian trajectories of migrating bubbles confirms these observations. Firstly, the average time of migration calculated from these trajectories coincides with the mean transit time of the bubbles across the structures. Secondly, once the trajectories have been scaled by this transit time and the boundary layer thickness δ, they all have the same form in the region y/δ < 0.4, independent of the Reynolds number.  相似文献   

20.
Subcooled flow boiling heat transfer for refrigerant R-134a in vertical cylindrical tubes with 0.83, 1.22 and 1.70 mm internal diameter was experimentally investigated. The effects of the heat flux, q″ = 1–26 kW/m2, mass flux, G = 300–700 kg/m2 s, inlet subcooling, ΔTsub,i = 5–15 °C, system pressure, P = 7.70–10.17 bar, and channel diameter, D, on the subcooled boiling heat transfer were explored in detail. The results are presented in the form of boiling curves and heat transfer coefficients. The boiling curves evidenced the existence of hysteresis when increasing the heat flux until the onset of nucleate boiling, ONB. The wall superheat at ONB was found to be essentially higher than that predicted with correlations for larger tubes. An increase of the mass flux leads, for early subcooled boiling, to an increase in the heat transfer coefficient. However, for fully developed subcooled boiling, increases of the mass flux only result in a slight improvement of the heat transfer. Higher inlet subcooling, higher system pressure and smaller channel diameter lead to better boiling heat transfer. Experimental heat transfer coefficients are compared to predictions from classical correlations available in the literature. None of them predicts the experimental data for all tested conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号