首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents experiments conducted with two single rectangular mini-channels of same hydraulic diameter (1.4 mm) and different aspect ratios for conditions of horizontal boiling flow. The Forane® 365 HX used was subcooled (ΔTsub = 15 °C) for all the boiling curves presented in the paper. Local heat transfer coefficients were measured for heat flux ranging from 25 to 62 kW m−2 and mass flux from 200 kg m−2 s−1 to 400 kg m−2 s−1. The boiling flows were observed with two different cameras (depending on the flow velocity) through a visualization window. The flow patterns in the two channels were compared for similar conditions. The results show that the boiling heat transfer coefficient and the pressure drop values are different for the two single mini-channels. For low heat flux condition, the channel with lowest aspect ratio (H/W = 0.143) has a higher heat transfer coefficient. On the other hand, for high heat flux condition, the opposite situation occurs, namely the heat transfer coefficient becomes higher for the channel with highest aspect ratio (H/W = 0.43). This is probably due to the earlier onset of dryout in the channel with lowest aspect ratio. For the two cases of heating, the pressure drop for the two-phase flow remains lower for the channel with lowest aspect ratio. These results show that the aspect ratio plays a substantial role for boiling flows in rectangular channels. As for single-phase flows, the heat transfer characteristics are significantly influenced (even though the hydraulic diameter remains the same) by this parameter.  相似文献   

2.
This investigation is aimed at studying the heat transfer characteristics and pressure drop for turbulent airflow in a sudden expansion pipe equipped with propeller type swirl generator or spiral spring with several pitch ratios. The investigation is performed for the Reynolds number ranging from 7500 to 18,500 under a uniform heat flux condition. The experiments are also undertaken for three locations for the propeller fan (N = 15 blades and blade angle of 65°) and three pitch ratios for the spiral spring (P/D = 10, 15 and 20). The influences of using the propeller rotating freely and inserted spiral spring on heat transfer enhancement and pressure drop are reported. In the experiments, the swirl generator and spiral spring are used to create a swirl in the tube flow. Mean and relative mean Nusselt numbers are determined and compared with those obtained from other similar cases. The experimental results indicate that the tube with the propeller inserts provides considerable improvement of the heat transfer rate over the plain tube around 1.69 times for X/H = 5. While for the tube with the spiral spring inserts, an improvement of the heat transfer rate over the plain tube around 1.37 times for P/d = 20. Thus, because of strong swirl or rotating flow, the propeller location and the spiral spring pitch become influential on the heat transfer enhancement. The increase in pressure drop using the propeller is found to be three times and for spiral spring 1.5 times over the plain tube. Correlations for mean Nusselt number, fan location and spiral spring pitch are provided.  相似文献   

3.
Saturated flow boiling of environmentally acceptable nonionic surfactant solutions of Alkyl (8–16) was compared to that of pure water. The concentration of surfactant solutions was in the range of 100–1000 ppm. The liquid flowed in an annular gap of 2.5 and 4.4 mm between two vertical tubes. The heat was transferred from the inner heated tube to two-phase flow in the range of mass flux from 5 to 18 kg/m2 s and heat flux from 40 to 200 kW/m2. Boiling curves of water were found to be heat flux and channel gap size dependent but essentially mass flux independent. An addition of surfactant to the water produced a large number of bubbles of small diameter, which, at high heat fluxes, tend to cover the entire heater surface with a vapor blanket. It was found that the heat transfer increased at low values of relative surfactant concentration C/C0, reaches a maximum close to the value of C/C0 = 1 (where C0 = 300 ppm is the critical micelle concentration) and decreased with further increase in the amount of additive. The dependence of the maximal values of the relative heat transfer enhancement, obtained at the value of relative concentration of C/C0 = 1, on the boiling number Bo may be presented as single curve for both gap sizes and the whole range of considered concentrations.  相似文献   

4.
Subcooled flow boiling heat transfer for refrigerant R-134a in vertical cylindrical tubes with 0.83, 1.22 and 1.70 mm internal diameter was experimentally investigated. The effects of the heat flux, q″ = 1–26 kW/m2, mass flux, G = 300–700 kg/m2 s, inlet subcooling, ΔTsub,i = 5–15 °C, system pressure, P = 7.70–10.17 bar, and channel diameter, D, on the subcooled boiling heat transfer were explored in detail. The results are presented in the form of boiling curves and heat transfer coefficients. The boiling curves evidenced the existence of hysteresis when increasing the heat flux until the onset of nucleate boiling, ONB. The wall superheat at ONB was found to be essentially higher than that predicted with correlations for larger tubes. An increase of the mass flux leads, for early subcooled boiling, to an increase in the heat transfer coefficient. However, for fully developed subcooled boiling, increases of the mass flux only result in a slight improvement of the heat transfer. Higher inlet subcooling, higher system pressure and smaller channel diameter lead to better boiling heat transfer. Experimental heat transfer coefficients are compared to predictions from classical correlations available in the literature. None of them predicts the experimental data for all tested conditions.  相似文献   

5.
Fluid forces on a very low Reynolds number airfoil and their prediction   总被引:1,自引:0,他引:1  
This paper presents the measurements of mean and fluctuating forces on an NACA0012 airfoil over a large range of angle (α) of attack (0-90°) and low to small chord Reynolds numbers (Rec), 5.3 × 103-5.1 × 104, which is of both fundamental and practical importance. The forces, measured using a load cell, display good agreement with the estimate from the LDA-measured cross-flow distributions of velocities in the wake based on the momentum conservation. The dependence of the forces on both α and Rec is determined and discussed in detail. It has been found that the stall of an airfoil, characterized by a drop in the lift force and a jump in the drag force, occurs at Rec ? 1.05 × 104 but is absent at Rec = 5.3 × 103. A theoretical analysis is developed to predict and explain the observed dependence of the mean lift and drag on α.  相似文献   

6.
A scaling analysis based on the field equations for two phases and the jump conditions at the interface is carried out to deduce a balance of forces acting on a Taylor drop rising through stagnant liquid in a vertical pipe. The force balance is utilized to deduce a functional form of an empirical correlation of terminal velocity of the Taylor drop. Undetermined coefficients in the correlation are evaluated by making use of available correlations for two limiting cases, i.e. extremely high and low Reynolds number Taylor bubbles in large pipes. Terminal velocity data obtained by interface tracking simulations are also used to determine the coefficients. The proposed correlation expresses the Froude number Fr as a function of the drop Reynolds number ReD, the Eötvös number EoD and the viscosity ratio μ*. Comparisons between the correlation, simulations and experimental data confirm that the proposed correlation is applicable to Taylor drops under various conditions, i.e., 0.002 < ReD < 4960, 4.8 < EoD < 228, 0 ? μ* ? 70, 1 < N < 14700, −12 < log M < 4, and d/D < 1.6, where N is the inverse viscosity number, M the Morton number, d the sphere-volume equivalent drop diameter and D the pipe diameter.  相似文献   

7.
We consider turbulent flows in a differentially heated Taylor-Couette system with an axial Poiseuille flow. The numerical approach is based on the Reynolds Stress Modeling (RSM) of [Elena and Schiestel, 1996] and [Schiestel and Elena, 1997] widely validated in various rotor-stator cavities with throughflow ( [Poncet, 2005], [Poncet et al., 2005] and [Haddadi and Poncet, 2008]) and heat transfer (Poncet and Schiestel, 2007). To show the capability of the present code, our numerical predictions are compared very favorably to the velocity measurements of Escudier and Gouldson (1995) in the isothermal case, for both the mean and turbulent fields. The RSM model improves, in particular, the predictions of the k-ε model of Naser (1997). Then, the second order model is applied for a large range of rotational Reynolds (3744 ? Rei ? 37,443) and Prandtl numbers (0.01 ? Pr ? 12), flow rate coefficient (0 ? Cw ? 30,000) in a very narrow cavity of radius ratio s = Ri/Ro = 0.961 and aspect ratio L = (Ro − Ri)/h = 0.013, where Ri and Ro are the radii of the inner and outer cylinders respectively and h is the cavity height. Temperature gradients are imposed between the incoming fluid and the inner and outer cylinders. The mean hydrodynamic and thermal fields reveal three distinct regions across the radial gap with a central region of almost constant axial and tangential mean velocities and constant mean temperature. Turbulence, which is weakly anisotropic, is mainly concentrated in that region and vanishes towards the cylinders. The mean velocity distributions are not clearly affected by the rotational Reynolds number and the flow rate coefficient. The effects of the flow parameters on the thermal field are more noticeable and considered in details. Correlations for the averaged Nusselt numbers along both cylinders are finally provided according to the flow control parameters Rei, Cw, and Pr.  相似文献   

8.
This paper experimentally investigates flow boiling characteristics in a cross-linked microchannel heat sink at low mass fluxes and high heat fluxes. The heat sink consists of 45 straight microchannels each with a hydraulic diameter of 248 μm and heated length of 16 mm. Three cross-links, of width 500 μm, are introduced in the present microchannel heat sink to achieve better temperature uniformity and to avoid flow mal-distribution. Flow visualization, flow instability, two-phase pressure drop, and two-phase heat transfer measurements are conducted using the dielectric coolant FC-72 over a range of heat flux from 7.2 to 104.2 kW/m2, mass flux from 99 to 290 kg/m2 s, and exit quality from 0.01 to 0.71. Thermochromic liquid crystals are used in the present study as full-field surface temperature sensors to map the temperature distribution on the heat sink surface. Flow visualization studies indicate that the observed flow regime is primarily slug. Visual observations of flow patterns in the cross-links demonstrate that bubbles nucleate and grow rapidly on the surface of the cross-links and in the tangential direction at the microchannels’ entrance due to the effect of circulations generated in those regions. The two-phase pressure drop strongly increases with the exit quality, at xe,o < 0.3, and the two-phase frictional pressure drop increases by a factor of 1.6–2 compared to the straight microchannel heat sink. The flow boiling heat transfer coefficient increases with increasing exit quality at a constant mass flux, which is caused by the dominance of the nucleation boiling mechanism in the cross-link region.  相似文献   

9.
The pool boiling heat transfer and critical heat flux CHF of saturated HFE-7100 at atmospheric pressure on a confined smooth copper surface were experimentally studied. The horizontal upward boiling surface was confined by a face-to-face parallel unheated surface. We analysed the effects obtained by changing the diameter of the unheated surface and the gap between the boiling surface and the adiabatic surface. The gap values investigated were s = 0.5, 1.0, 2.0, 3.5 mm. To confine the circular boiling surface (d = 30 mm), two different Plexiglas discs were used: one with a diameter D = 30 mm, equal to that of the copper boiling surface, and the other with a diameter D = 60 mm, equal to that of the overall test section support. For each configuration, boiling curves were obtained up to the thermal crisis. For both configurations, it was observed that, at low wall superheat, the effect of confinement was not significant if Bo > 1, while for Bo ? 1 the heat transfer coefficient increased as the channel width s decreased. By contrast, at high wall superheat, a drastic reduction in both heat transfer and CHF was seen when the channel width s decreased; this reduction was less pronounced when the smaller confinement disc (D = 30 mm) was used. CHF data were also compared with the values predicted by literature correlations.  相似文献   

10.
The quenching curves (temperature vs time) for small (∼1 cm) metallic spheres exposed to pure water and water-based nanofluids with alumina, silica and diamond nanoparticles at low concentrations (?0.1 vol%) were acquired experimentally. Both saturated (ΔTsub = 0 °C) and highly subcooled (ΔTsub = 70 °C) conditions were explored. The spheres were made of stainless steel and zircaloy, and were quenched from an initial temperature of ∼1000 °C. The results show that the quenching behavior in nanofluids is nearly identical to that in pure water. However, it was found that some nanoparticles accumulate on the sphere surface, which results in destabilization of the vapor film in subsequent tests with the same sphere, thus greatly accelerating the quenching process. The entire boiling curves were obtained from the quenching curves using the inverse heat transfer method, and revealed that alumina and silica nanoparticle deposition on the surface increases the critical heat flux and minimum heat flux temperature, while diamond nanoparticle deposition has a minimal effect on the boiling curve. The possible mechanisms by which the nanoparticles affect the quenching process were analyzed. It appears that surface roughness increase and wettability enhancement due to nanoparticle deposition may be responsible for the premature disruption of film boiling and the acceleration of quenching. The basic results were also confirmed by quench tests with rodlets.  相似文献   

11.
Laminar free convection heat transfer from two vertical arrays of five isothermal cylinders separated by flow diverters is studied experimentally using a Mach-Zehnder interferometer. The width of flow diverters is kept constant to two-cylinder diameters and the cylinders vertical center-to-center spacing is equal to three-cylinder diameter. Effect of the ratio of the horizontal spacing between two cylinder arrays to their diameter (Sh/D) on heat transfer from the cylinders is investigated for various Rayleigh numbers. The experiments are performed for Sh/D = 2-4, and the Rayleigh number based on the cylinder diameter ranging from 103 to 3 × 103. It is observed that for small Sh/D ratios, the flow diverters have a negative effect on the total rate of heat transfer from the arrays; while by increasing the horizontal center to center spacing, they tend to enhance the overall cooling rate of the array. Moreover, increasing Ra and Sh/D generally results in a higher average Nusselt number for each cylinder in the array.  相似文献   

12.
The equilibrated grain boundary groove shapes for solid Zn solution (Zn-3.0 at.% Al-0.3 at.% Bi) in equilibrium with the Zn-Al-Bi eutectic liquid (Zn-12.7 at.% Al-1.6 at.% Bi) have been observed from quenched sample with a radial heat flow apparatus. Gibbs-Thomson coefficient, solid-liquid interfacial energy and grain boundary energy for solid Zn solution in equilibrium with Al-Bi-Zn eutectic liquid have been determined to be (5.1 ± 0.4) × 10−8 K m, (80.1 ± 9.6) × 10−3 and (158.6 ± 20.6) × 10−3 J m−2 from the observed grain boundary groove shapes, respectively. The thermal conductivity variation with temperature for solid Zn solution has been measure with radial heat flow apparatus and the value of thermal conductivity for solid Zn solution has been determined to be 135.68 W/km at the eutectic melting temperature. The thermal conductivity ratio of equilibrated eutectic liquid to solid Zn solution, R = KL(Zn)/KS(Zn) has also been measured to be 0.85 with Bridgman type solidification apparatus.  相似文献   

13.
Natural convection boiling of water and surfactant solutions in a confined space between two vertical plates was studied experimentally in the range of heat flux 19–170 kW/m2. The surfactant used was Alkyl (8–16) Glucoside having negligible environmental impact. The gap size was changed in the range of s = 1–80 mm, the concentration of surfactant solutions was changed in the range of C = 200–600 ppm. Generally, an addition of surfactant leads to an enhancement of heat transfer compared to water boiling at the same gap size. Enhancement of the heat transfer depending on the solution concentration at fixed gap size yields maximum value at the solution concentration close to the critical micelle concentration. The effect of confined space on a bubble dynamic was studied. Temperature field on the heater was determined using the infrared thermography technique. Quasi periodic wall temperature fluctuations were observed in the regime of high heat flux. An increase in the Bond number leads to an increase in the dimensionless frequency of the heated wall temperature fluctuations. The correlation between the dimensionless parameter of heat transfer and the Bond number under condition of quasi periodic boiling was derived and discussed.  相似文献   

14.
Pool boiling is experimentally studied on a relatively large downward-facing surface with heated stainless steel disk diameters of D = 100 and 300 mm in confined space at atmospheric pressure using water as the working fluid. The bulk working fluid is subcooled. The gap size s can be adjusted to 10, 15 and 20 mm for D = 100 mm and 0.9–77 mm for D = 300 mm. We found that pool boiling under the present condition is far weaker than that occurring on an upward-facing surface. Furthermore, we found that the larger the diameter of the stainless steel plate, the weaker the pool boiling heat transfer. The heat transfer rate may be predicted by the Kutateladze correlation for s > 20 mm and by its modified form for s < 20 mm for both D = 100 and D = 300 mm. Two different typical bubble circulation motions are found. Type I motion occurs with a probability of 90.9% and type II occurs with a probability of 9.1% according to the statistical calculations. Most coalesced bubble diameters are from 90 to 100 mm for D = 100 mm and from 100 to 200 mm for D = 300 mm.  相似文献   

15.
The following cold-flow study examines the interaction of the diffracted shock wave pattern and the resulting vortex loop emitted from a shock tube of various geometries, with an ejector having a round bell-shaped inlet. The focus of the study is to examine the performance of the ejector when using different jet geometries (primary flow) to entrain secondary flow through the ejector. These include two circular nozzles with internal diameters of 15 mm and 30 mm, two elliptical nozzles with minor to major axis ratios of a/b = 0.4 and 0.6 with b = 30 mm, a square nozzle with side lengths of 30 mm, and two exotic nozzles resembling a pair of lips with axis ratios of a/b = 0.2 and 0.5 with b = 30 mm. Shock tube driver pressures of P4 = 4, 8, and 12 bar were studied, with the pressure of the shock tube driven section P1 being atmospheric. High-speed schlieren photography using the Shimadzu Hypervision camera along with detailed pressure measurements along the ejector and the impulse created by the ejector were conducted.  相似文献   

16.
An experimental study of evaporation heat transfer coefficients for single circular small tubes was conducted for the flow of C3H8, NH3, and CO2 under various flow conditions. The test matrix encompasses the entire quality range from 0.0 to 1.0, mass fluxes from 50 to 600 kg m−2 s−1, heat fluxes from 5 to 70 kW m−2, and saturation temperatures from 0 to 10 °C. The test section was made of circular stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm, and a length of 2000 mm in a horizontal orientation. The test section was uniformly heated by applying electric power directly to the tubes. The effects of mass flux, heat flux, saturation temperature, and inner tube diameter on the heat transfer coefficient are reported. Among the working refrigerants considered in this study, CO2 has the highest heat transfer coefficient. Laminar flow was observed in the evaporative small tubes, and was considered in the modification of boiling heat transfer coefficients and pressure drop correlations.  相似文献   

17.
The adiabatic two-phase frictional multipliers for SUVA, R-134a flowing in a rectangular duct (with DH = 4.8 mm) have been measured for three nominal system pressures (0.9 MPa, Tsat = 35.5 °C; 1.38 MPa, Tsat = 51.8 °C; and 2.41 MPa, Tsat = 75.9 °C) and three nominal mass fluxes (510, 1020 and 2040 kg/m2/s). The data is compared with several classical correlations to assess their predictive capabilities. The Lockhart–Martinelli model gives reasonable results at the lowest pressure and mass flux, near the operating range of most refrigeration systems, but gives increasingly poor comparisons as the pressure and mass flux are increased. The Chisholm B-coefficient model is found to best predict the data over the entire range of test conditions; however, there is significant disagreement at the highest pressure tested (with the model over predicting the data upwards of 100% for some cases). The data shows an increased tendency toward homogeneous flow as the pressure and flow rate are increased, and in fact the homogeneous model best predicts the bulk of the data at the highest pressure tested.  相似文献   

18.
Experiments have been performed to study the heat transfer process of swirling flow issued into a heated convergent pipe with a convergent angle of 5° with respect to the pipe axis. A flat vane swirler situated at the entrance of the pipe is used to generate the swirling flow. During the experiments, the Reynolds number ranges from 7970 to 47,820, and the swirl number from 0 to 1.2. It is found that the convergence of the pipe can accelerate the flow which has an effect to suppress the turbulence generated in the flow and reduce the heat transfer. However, in the region of weak swirl (= 0-0.65), the Nusselt numbers increase with increasing swirl numbers until = 0.65, where turbulence intensity is expected to be large enough and not suppressible. In the region of strong swirl (> 0.65), where recirculation flow is expected to be generated in the core of the swirling flow, the heat transfer characteristic can be altered significantly. At very high swirl (? 1.0), the accelerated flow in the circumferential direction is expected to be dominant, which leads to suppress the turbulence and reduce the heat transfer. The Nusselt number is found proportional to the swirl number. Correlations of the Nusselt numbers in terms of the swirl number, the Reynolds number and the dimensionless distance are attempted and are very successful in both the weak and the strong swirl regions.  相似文献   

19.
Direct numerical simulations (DNSs) of a turbulent boundary layer (TBL) with Reθ = 570-2560 were performed to investigate the spatial development of its turbulence characteristics. The inflow simulation was conducted in the range Reθ = 570-1600 by using Lund’s method. To resolve the numerical periodicity induced by the recycling method, we adopted a sufficiently long streamwise domain of x/θin,i = 1000 (=125δ0,i), where θin,i is the inlet momentum thickness and δ0,i is the inlet boundary layer thickness in the inflow simulation. Furthermore, the main simulation with a length greater than 50δ0 was carried out independently by using the inflow data, where δ0 is the inlet boundary layer thickness of the main simulation. The integral quantities and the first-, second- and higher-order turbulence statistics were compared with those of previous data, and good agreement was found. The present study provides a useful database for the turbulence statistics of TBLs. In addition, instantaneous field and two-point correlation of the streamwise velocity fluctuations displayed the existence of the very large-scale motions (VLSMs) with the characteristic widths of 0.1-0.2δ and that the flow structure for a length of approximately ∼6δ fully occupies the streamwise domain statistically.  相似文献   

20.
In the present study, liquid film thicknesses in parallel channels with heights of H = 0.1, 0.3 and 0.5 mm are measured with two different optical methods, i.e., interferometer and laser focus displacement meter. Ethanol is used as a working fluid. Liquid film thicknesses obtained from two optical methods agree very well. At low capillary numbers, dimensionless liquid film thickness is in accordance with Taylor’s law. However, as capillary number increases, dimensionless liquid film thickness becomes larger than Taylor’s law for larger channel heights. It is attributed to the dominant inertial effect at high capillary numbers. Using channel height H for dimensionless liquid film thickness δ0/H and hydraulic diameter Dh = 2H as the characteristic length for Reynolds and Weber numbers, liquid film thickness in a parallel channel can be predicted well by the circular tube correlation previously proposed by the authors. This is because curvature differences between bubble nose and flat film region are identical in circular tubes and parallel channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号