首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inks used in gravure-offset printing are non-Newtonian fluids with higher viscosities and lower surface tensions compared to Newtonian fluids. This paper examines the transfer of a non-Newtonian ink between two parallel plates when the top plate is moved upward with a constant velocity while the bottom plate is held fixed. Numerical simulations were carried out using the Carreau model to explore the behavior of a non-Newtonian ink in gravure-offset printing. The volume of fluid (VOF) model was adopted to demonstrate the stretching and break-up behaviors of the ink. The results indicate that the ink transfer ratio is greatly influenced by the contact angle, especially the contact angle at the upper plate (α). For lower values of α, oscillatory or unstable behavior of the position of minimum thickness of the ink between the two parallel plates during the stretching period is observed. This oscillation gradually diminishes as the contact angle at the upper plate is increased. Moreover, the number of satellite droplets increases as the velocity of the upper plate is increased. The surface tension of the conductive ink shows a positive impact on the ink transfer ratio to the upper plate. Indeed, the velocity of the upper plate has a significant influence on the ink transfer in gravure-offset printing when the Capillary number (Ca) is greater than 1 and the surface tension dominates over the ink transfer process when Ca is less than 1.  相似文献   

2.
A theoretical analysis has been proposed for the forced convection heat transfer from external surfaces immersed in non-Newtonian fluids of the power-law model. The integral treatment previously introduced for Newtonian fluids has been successfully extended to the non-Newtonian fluids over a flat plate and a wedge of an arbitrary included angle. The integral momentum and energy equations are transformed into a pair of characteristic equations, which can readily be solved for the velocity shape factor and the boundary layer thickness ratio, once the exponents in the expressions for the power-law model, free stream velocity and wall temperature variation are specified. It has been also found that an asymptotic expression derived under the assumption of large Prandtl number, is valid practically for all power-law fluids, and hence, can be used for a speedy, and yet accurate estimation of the local heat transfer to non-Newtonian fluids.  相似文献   

3.
Viscoelasticity in inkjet printing   总被引:1,自引:0,他引:1  
We investigate the effects of viscoelasticity on drop generation in inkjet printing. In drop-on-demand printing, individual ink ‘drops’ are ejected from a nozzle by imposed pressure pulses. Upon exiting the nozzle, the shape of each ‘drop’ is that of a nearly spherical bead with a long thin trailing ligament. This ligament subsequently breaks up under the Rayleigh instability, typically into several small droplets (known as satellite drops). These satellite drops can create unwanted splash on the target substrate and a reduction in printing quality. Satellite drops can potentially be eliminated by adding polymer to the ink; elastic stresses can act to contract the trailing ligament into the main drop before capillary breakup occurs. However, elasticity can also reduce the drop velocity and can delay or even prevent the break-off of the drop from the ink reservoir within the nozzle. To achieve optimal drop shape and speed, non-Newtonian parameters such as the polymer concentration and molecular weight must be chosen correctly. We explore this parameter space via numerical simulations, using the Lagrangian–Eulerian finite-element method of Harlen et al. (J Non-Newtonian Fluid Mech 60:81–104, 1995). Results are compared with experimental observations taken from real printheads.  相似文献   

4.
A Prandtl transformation method is applied to study the transient free convection of non-Newtonian fluids along a wavy vertical plate in the presence of a magnetic field. A simple transformation is proposed to transform the governing equations into the boundary-layer equations and solved numerically by the cubic spline approximation. A simple coordinate transformation is employed to transform the complex wavy surface to a vertical flat plate for a constant wall temperature by the numerical method. The effects of the magnetic field parameter, the wavy geometry and the non-Newtonian nature of the fluids on the flow characteristics and heat transfer are discussed in detail.  相似文献   

5.
The dependence of the velocity of the motion of a tow with an inclined plate mounted in a wave water channel on the wave parameters, the submergence depth, and the angle of inclination and dimensions of the plate is experimentally investigated. The effect of tow motion counter to the waves is detected and theoretically justified. The free surface profiles for periodic waves above an inclined plate obtained using the elolutionary system of the Boussinesq approximation equations correspond to the measured ones. The pulse generated as a result of wave breakup is estimated.  相似文献   

6.
The problem of boundary-layer flow and heat transfer of a non-Newtonian power-law fluid over a moving porous infinite flat plate in the presence of viscous dissipation and heat generation or absorption is investigated analytically. It is assumed that both the momentum and the energy equations are coupled by the stress friction factor, and an assumption is introduced regarding the heat-transfer index. It is found that exact analytical solutions for velocity and temperature exist only for pseudoplastic fluids in the presence of suction at the surface. The effects of the suction parameter, Eckert number, and the heat generation or absorption parameter on the velocity and temperature profiles, as well as on the skin-friction coefficient and Nusselt number are discussed.  相似文献   

7.
A similarity solution is presented for the problem of free convection boundary layer in power-law type non-Newtonian fluids along a horizontal plate with variable wall temperature or heat flux distribution. The effects of surface mass transfer are included. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.  相似文献   

8.
A model for predicting the frequency of occurrence of sublayer bursts in non-Newtonian fluids is developed. The model is based on the similarity between turbulent pipe flow and a flat plate boundary layer at zero incidence. All parameters in the model are determined from hydrodynamic studies. The predicted bursting periods for Newtonian, power-law, and drag-reducing fluids are in reasonable agreement with previously published data and correlations.  相似文献   

9.
Numerical analysis of the free convection coupled heat and mass transfer is presented for non-Newtonian power-law fluids with the yield stress flowing over a two-dimensional or axisymmetric body of an arbitrary shape in a fluid-saturated porous medium. The governing boundary layer equations and boundary conditions are cast into a dimensionless form by the similarity transformation. The resulting system of equations is solved by a finite difference method. The parameters studied are the rheological constants, the buoyancy ratio, and the Lewis number. Representative velocity, temperature, and concentration profiles are presented and discussed. It is found that the results depend strongly on the values of the yield stress parameter and the power-law index of the non-Newtonian fluid.  相似文献   

10.
Summary The Rayleigh problem or impulsive motion of a flat plate has been solved using a perturbation scheme when the surrounding fluid is representable by the constitutive equations of Oldroyd or Coleman and Noll. The shear stress and normal stress at the wall were expressed analytically for this unsteady motion. Further, an exact solution of the equations was found for a special case of the constitutive equations.The motion of the fluid above a harmonically oscillating plate or the Stokes problem has been determined for a special non-Newtonian fluid. The penetration of the shear wave into the fluid, the energy dissipation, the velocity profiles and the shear and normal stresses at the wall were expressed and compared to an equivalent Newtonian fluid.Some of the features of these non-Newtonian fluids were examined in simple shearing flows, and techniques to calculate some of the material constants discussed.  相似文献   

11.
This paper presents an analytical solution to the unsteady flow of the second-order non-Newtonian fluids by the use of intergral transformation method.Based on the numerical results,the effect of non-Newtonian coefficient Hc and other parameters on the flow are analysed.It is shown that the annular flow has a shorter characteristic time than the general pipe flow while the correspondent velocity,average velocity have a(?)aller value for a given Hc.Else,when radii ratio keeps unchanged,the shear stress of inner wall of annular flow will change with the inner radius compared with the general pipe flow and is always smaller than that of the outer wall.  相似文献   

12.
Numerical analysis of the free convection coupled heat and mass transfer is presented for non-Newtonian power-law fluids with the yield stress flowing over a two-dimensional or axisymmetric body of an arbitrary shape in a fluid-saturated porous medium. The governing boundary layer equations and boundary conditions are cast into a dimensionless form by the similarity transformation. The resulting system of equations is solved by a finite difference method. The parameters studied are the rheological constants, the buoyancy ratio, and the Lewis number. Representative velocity, temperature, and concentration profiles are presented and discussed. It is found that the results depend strongly on the values of the yield stress parameter and the power-law index of the non-Newtonian fluid.  相似文献   

13.
In this investigation, we intend to present the influence of the prominent Soret effect on double-diffusive free convection heat and mass transfer in the boundary layer region of a semi-infinite inclined flat plate in a nanofluid saturated non-Darcy porous medium. The transformed boundary layer ordinary differential equations are solved numerically using the shooting and matching technique. Consideration of the nanofluid and the coupled convective process enhanced the number of non-dimensional parameters considerably thereby increasing the complexity of the present problem. A wide range of parameter values are chosen to bring out the effect of Soret parameter on the free convection process with varying angle of inclinations making the wall geometry from vertical to horizontal plate. The effects of angle of inclination and Soret parameter on the flow, heat and mass transfer coefficients are analyzed. The numerical results obtained for the velocity, temperature, volume fraction, and concentration profiles, local wall temperature, local nanoparticle concentration, and local wall concentration reveal interesting phenomenon, and some of these qualitative results are presented through the plots.  相似文献   

14.
Experimental data on velocity fields and flow patterns near a moving contact line is shown to be at variance with existing hydrodynamic theories. The discrepancy points to a new hydrodynamic paradox and suggests that the hydrodynamic approach may be incomplete and further parameters or forces affecting the surfaces may have to be included. A contact line is the line of intersection of three phases: (1) a solid, (2) a liquid, and (3) a fluid (liquid or gas) phase. A moving contact line develops when the contact line moves along the solid surface. A flat plate moved up and down, inside and out of a liquid pool defines a simple, reliable experimental model to characterize dynamic contact lines. Highlighted are three important conclusions from the experimental results that should be prominent in the development of new theoretical models for this flow. First, the velocity along the streamline configuring the liquid–fluid interface is remarkably constant within a distance of a couple of millimeters from the contact line. Second, the relative velocity of the liquid–fluid interface, defined as the ratio of the velocity along the interface to the velocity of the solid surface, is independent of the solid surface velocity. Third, the relative interface velocity is a function of the dynamic contact angle.  相似文献   

15.
The buoyancy-induced flows of non-Newtonian fluids over non-isothermal bodies of arbitrary shape within saturated porous media have been treated using the boundary layer approximations and the power-law model to characterize the non-Newtonian fluid behavior. Upon introducing a general similarity transformation which considers both the geometrical effect and the wall temperature effect on the development of the boundary layer length scale, the governing equations for a non-isothermal body of arbitrary shape have been reduced to those for a vertical flat plate. The transformed equations reveal that a plane or axisymmetric body of arbitrary shape possesses its corresponding family of the wall temperature distributions which permit similarity solutions. Numerical integrations were carried out using the Runge-Kutta-Gill method, and the results of the heat transfer function were presented once for all plane and axisymmetric bodies. As illustrations, local wall heat flux distributions were discussed for wedges, cones, spheres, circular cylinders and other geometries. Furthermore, an approximate formula based on the Karman-Pohlhausen integral relation has been presented for speedy and sufficiently accurate estimation of heat transfer rates.  相似文献   

16.
The problem of turbulent free convection heat transfer from curved surfaces to non-Newtonian power-law fluids has been investigated using the Nakayama-Koyama solution methodology. The scheme is designed to deal with bodies of arbitrary geometric configurations and hence can be viewed as a generalized version of the Shenoy-Mashelkar approach for turbulent free convection heat transfer from a flat vertical plate to a power-law fluid. The surface wall temperature is allowed to vary in the streamwise direction in an arbitrary fashion, and calculations are carried out for the turbulent free convection about the horizontal circular cylinder and sphere for illustrative purposes. Available theoretical and experimental data have been compared with the predictions of the present analysis and the comparison of results has been found to be reasonably good.  相似文献   

17.
The unsteady laminar incompressible boundary layer flow due to a two-dimensional slot jet on a flat plate at an angle of attack has been studied. The unsteadiness in the flow field is due to the free stream velocity distribution or wall temperature (concentration) which varies with time. The governing partial differential equations in primitive variables have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. The effect of the variation of the free stream velocity distribution with time is found to be more pronounced on the skin friction than on the heat or mass transfer. The Prandtl number and the variation of the wall temperature with time strongly affect the heat transfer. Similarly, the Schmidt number and the variation of the concentration at the wall with time strongly affect the mass transfer. Beyond a certain critical value of the viscous dissipation parameter, the plate gets heated instead of being cooled.  相似文献   

18.
A nonsimilar boundary layer analysis is presented for the problem of mixed convection in power-law type non-Newtonian fluids along a vertical plate with power-law surface heat flux distribution. The mixed convection regime is divided into two regions, namely, the forced convection dominated regime and the free convection dominated regime. The two solutions are matched. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate. Received on 13 October 1998  相似文献   

19.
This paper investigates mixed free and forced convection of non-Newtonian fluids from a vertical isothermal plate embedded in a homogenous porous medium. A mathematical model is developed based on the modified Darcy's law and boundary-layer approximations, and the exact similarity solution is obtained as well as an integral solution. These two solutions agree within 3% for aiding flows and 10% for opposing flows. It is found that, non-Newtonian characteristics of fluids have appreciable influences on velocity profiles, temperature distributions and flow regimes.  相似文献   

20.
The characterization of the extensional rheology of polymeric solutions is important in several applications and industrial processes. Filament stretching and capillary breakup rheometers have been developed to characterize the extensional properties of polymeric solutions, mostly for high-viscosity fluids. However, for low concentration polymer solutions, the measurements are difficult using available devices, in terms of the minimum viscosity and relaxation times that can be measured accurately. In addition, when the slow retraction method is used, solvent evaporation can affect the measurements for volatile solvents. In this work, a new setup was tested for filament breakup experiments using the slow retraction method, high-speed imaging techniques, and an immiscible oil bath to reduce solvent evaporation and facilitate particle tracking in the thinning filament. Extensional relaxation times above around 100 μs were measured with the device for dilute and semi-dilute polymer solutions. Particle tracking velocimetry was also used to measure the velocity in the filament and the corresponding elongation rate, and to compare with the values obtained from the measured exponential decay of the filament diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号