首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents a linear stability analysis for the onset of natural convection in a horizontal nanofluid layer. The employed model incorporates the effects of Brownian motion and thermophoresis. Both monotonic and oscillatory convection for free–free, rigid–rigid, and rigid–free boundaries are investigated. The oscillatory instability is possible when nanoparticles concentrate near the bottom of the layer, so that the density gradient caused by such a bottom-heavy nanoparticle distribution competes with the density variation caused by heating from the bottom. It is established that the instability is almost purely a phenomenon due to buoyancy coupled with the conservation of nanoparticles. It is independent of the contributions of Brownian motion and thermophoresis to the thermal energy equation. Rather, the Brownian motion and thermophoresis enter to produce their effects directly into the equation expressing the conservation of nanoparticles so that the temperature and the particle density are coupled in a particular way, and that results in the thermal and concentration buoyancy effects being coupled in the same way.  相似文献   

2.
The onset of double-diffusive convection in a horizontal fluid layer is studied. The density is assumed to depend quadratically on the temperature and linearly on the solute concentration. Under the Boussinesq approximation, the linear stability of the conduction state is investigated with respect to the oscillatory and steady convection modes. For steady onset, the critical thermal Rayleigh number is found to be a double-valued function of the solutal Rayleigh number as long as the relative maximum of the density profile exists within the fluid layer. Driving mechanisms of the steady convections are discussed.  相似文献   

3.
Linear and nonlinear stability analysis for the onset of convection in a horizontal layer of a porous medium saturated by a nanofluid is studied. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The modified Darcy equation that includes the time derivative term is used to model the momentum equation. In conjunction with the Brownian motion, the nanoparticle fraction becomes stratified, hence the viscosity and the conductivity are stratified. The nanofluid is assumed to be diluted and this enables the porous medium to be treated as a weakly heterogeneous medium with variation, in the vertical direction, of conductivity and viscosity. The critical Rayleigh number, wave number for stationary and oscillatory mode and frequency of oscillations are obtained analytically using linear theory and the non-linear analysis is made with minimal representation of the truncated Fourier series analysis involving only two terms. The effect of various parameters on the stationary and oscillatory convection is shown pictorially. We also study the effect of time on transient Nusselt number and Sherwood number which is found to be oscillatory when time is small. However, when time becomes very large both the transient Nusselt value and Sherwood value approaches to their steady state values.  相似文献   

4.
The stability of a fluid saturated, horizontal porous layer in the presence of a solute concentration gradient and time-periodic thermal gradient is examined. The modulated gradient is the result of a sinusoidal upper surface temperature which models the effect of variable solar radiation heating of the layer. Darcy's law and the Boussinesq approximation are employed, and we assume an equation of state linear in temperature and concentration. A linear stability analysis is carried out to obtain predictions for the onset of convection and critical wavenumbers for the system. The critical conditions are obtained via the Galerkin method and Floquet theory. The effects of variable concentration gradient, temperature modulation amplitude and frequency are examined, and compared with the results obtained analytically from the corresponding unmodulated problem. It is shown that instabilities can occur as convective motions which are synchronous or subharmonic with the surface heating, or can be identified via complex conjugate Floquet exponents. The neutral stability curves at the transitions between instabilities are found to be bimodal when the temperature is time-periodic, and are characterized by jumps in the critical wavenumbers. Received February 5, 1998  相似文献   

5.
Linear and nonlinear stability analyses were performed on a fluid layer with a concentration-based internal heat source. Clear bimodal behaviour in the neutral curve (with stationary and oscillatory modes) is observed in the region of the onset of oscillatory convection, which is a previously unobserved phenomenon in radiation-induced convection. The numerical results for the linear instability analysis suggest a critical value γ c of γ, a measure for the strength of the internal heat source, for which oscillatory convection is inhibited when γ > γ c . Linear instability analyses on the effect of varying the ratio of the salt concentrations at the upper and lower boundaries conclude that the ratio has a significant effect on the stability boundary. A nonlinear analysis using an energy approach confirms that the linear theory describes the stability boundary most accurately when γ is such that the linear theory predicts the onset of mostly stationary convection. Nevertheless, the agreement between the linear and nonlinear stability thresholds deteriorates for larger values of the solute Rayleigh number for any value of γ.  相似文献   

6.
The onset of double diffusive convection in a viscoelastic fluid layer is studied using a linear and a weak nonlinear stability analyses. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. There is a competition between the processes of thermal diffusion, solute diffusion and viscoelasticity that causes the convection to set in through oscillatory mode rather than stationary. The effect of Deborah number, retardation parameter, solutal Rayleigh number, Prandtl number, Lewis number on the stability of the system is investigated. It is shown that the critical frequency increases with Deborah number and solutal Rayleigh number while it decreases with retardation parameter and Lewis number. The nonlinear theory based on the truncated representation of Fourier series method is used to find the heat and mass transfers. The transient behaviour of the Nusselt number and Sherwood number is investigated by solving the finite amplitude equations using Runge-Kutta method. The effect of viscoelastic parameters on heat and mass transfer is brought out.  相似文献   

7.
The linear stability of a viscoelastic liquid saturated horizontal anisotropic porous layer heated from below and cooled from above is investigated by considering the Oldroyd type liquid. A generalized Darcy model, which takes into account the viscoelastic properties, the mechanical and thermal anisotropy is employed as momentum equation. The critical Rayleigh number, wavenumber, for stationary and oscillatory states and frequency of oscillation are determined analytically. It is shown that oscillatory instabilities can set in before stationary modes are exhibited. The effect of the viscoelastic parameter, the mechanical and thermal anisotropy parameters and specific heat ratio on the linear stability of the system is analyzed and presented graphically.  相似文献   

8.
The dynamics of a small Prandtl number binary mixture in a laterally heated cavity is studied numerically. By combining temporal integration, steady state solving and linear stability analysis of the full PDE equations, we have been able to locate and characterize a codimension-three degenerate Takens–Bogdanov point whose unfolding describes the dynamics of the system for a certain range of Rayleigh numbers and separation ratios near S=-1. PACS 44.25.+f, 47.20.Bp, 05.45.-a  相似文献   

9.
In this work, the beginning of the instability (onset of convection) of an air layer of infinite width and depth heated from underneath with a constant heat flux is studied. In the theoretical part, the instability is studied using the quasi-static assumption. The functional relationship of Rayleigh number vs. horizontal wave number of the disturbance is obtained in a digital computer using Green's Fonctions for the case of Prandtl number equal to one. Furthermore in order to make a comparison with similar investigations, limiting cases of infinite and very small Prandtl numbers are also taken into consideration.-In the experimental part, Rayleigh numbers corresponding to the onset of manifest convection based on visual observations are investigated by optical methods under various heat fluxes. The average value measured is found to be 145.  相似文献   

10.
The effect of vertical vibrations on the convection in a rotating planar fluid layer heated from below was studied. In this case a modulation parameter, the acceleration due to gravity, appears in the problem. The modulation of the parameter may have a significant effect on the onset of convective instability. Parameter modulation in nonrotating layers has been investigated in earlier work [1–3]. The presence of rotation significantly increases the complexity of the mathematical problem, introducing an additional dependence of the solution on the Taylor number Ta and the Prandtl number Pr. Furthermore, an oscillatory convection regime can occur at the stability limit in rotating fluids with Pr < 1. Parameter modulation in the rotating fluid may not only lead to a change in the stability limit and critical wavelength but also to a change in the eigenfrequency of the oscillatory convection. Rauscher and Kelly [4] examined the effect of parameter modulation on the convective stability of a rotating fluid only for the particular case of a sinusoidal variation in the temperature gradient with a small amplitude for Pr = 1, i.e., the effect of modulation was studied on only a steady convection regime.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 12–22, July–August, 1984.  相似文献   

11.
12.
This study examines the stability of a horizontally extended second-grade fluid layer heated from below, when a steady temperature difference between the walls is superimposed on sinusoidal temperature perturbations. A linear stability analysis proposed by Venezian (J. Fluid Mech. 35 (1969) 243) is employed to obtain the critical Rayleigh numbers for different types of temperature modulation. The free–free and isothermal boundary conditions are considered so as to allow analytic solutions. The stability characterized by the shift in critical Rayleigh number R2c is calculated as a function of the modulation frequency ω, the Prandtl number Pr, and the viscoelastic parameter Q. It is found that the onset of convection can be delayed or advanced by these parameters.  相似文献   

13.
《Comptes Rendus Mecanique》2019,347(5):406-422
This work deals with the numerical analysis of a radiating gas flow caused by both temperature and buoyancy concentration gradients in a square cavity; in this regard, the set of governing equations, including conservation of mass, momentum, species, and energy are solved by a numerical technique. In terms of radiation, since the fluid is considered as a semitransparent medium, the radiative term in the energy equation appears and is calculated by numerical solving of the radiative transfer equation (RTE). Furthermore, all of the surrounding cavity walls are considered to be opaque, gray, and diffuse with constant emissivity. All of the flow equations are solved by the finite difference method (FDM) and the RTE by the discrete ordinate one (DOM). In the present study, an attempt is made to verify the optical thickness effects on flow, thermal behavior, and mass transform in a cavity flow, such that reciprocating trends were seen in this manner. Our numerical results show that the thermal field in double-diffusive convection flow reaches very fast its steady-state situation in comparison to the concentration distribution. Besides, it is found that the thermohydrodynamic characteristics of a double-diffusive convection flow of a radiating gas are much affected by optical thickness.  相似文献   

14.
Stability analysis of double-diffusive convection for viscoelastic fluid with Soret effect in a porous medium is investigated using a modified-Maxwell-Darcy model. We use the linear stability analysis to investigate how the Soret parameter and the relaxation time of viscoelastic fluid effect the onset of convection and the selection of an unstable wavenumber. It is found that the Soret effect is to destabilize the system for oscillatory convection. The relaxation time also enhances the instability of the system. The effects of Soret coefficient and relaxation time on the heat transfer rate in a porous medium are studied using the nonlinear stability analysis, the variation of the Nusselt number with respect to the Rayleigh number is derived for stationary and oscillatory convection modes. Some previous results can be reduced as the special cases of the present paper.  相似文献   

15.
A series of experiments has been performed for a linearly salt-stratified system heated from below. The experiments were intended to investigate the relative influence of external and double-diffusive convection on (i) entrainment of salt-stratified fluid into adjacent layers of convecting fluid, and (ii) formation of multiple mixed layers within stable, salt-stratified fluid layers. External convection effects were altered by placing a horizontal grid in the convecting fluid layer. An assortment of flow visualization techniques revealed that external convection can strongly influence entrainment of salt-stratified fluid and multiple mixed layer formation. However, the techniques could not resolve the possible significance of the double-diffusive entrainment mechanism.  相似文献   

16.
High-frequency broadband (200–300 kHz) acoustic scattering techniques have been used to observe the diffusive regime of double-diffusive convection in the laboratory. Pulse compression signal processing techniques allow (1) centimetre-scale interface thickness to be rapidly, remotely, and continuously measured, (2) the evolution, and ultimate merging, of multiple interfaces to be observed at high-resolution, and (3) convection cells within the surrounding mixed layers to be observed. The acoustically measured interface thickness, combined with knowledge of the slowly varying temperatures within the surrounding layers, in turn allows the direct estimation of double-diffusive heat and buoyancy fluxes. The acoustically derived interface thickness, interfacial fluxes and migration rates are shown to support established theory. Acoustic techniques complement traditional laboratory sampling methods and provide enhanced capabilities for observing the diffusive regime of double-diffusion in the ocean.  相似文献   

17.
The onset of convection in a system of two horizontal layers (a pure liquid and a porous medium saturated with the same liquid) heated from below under the action of vertical vibration is investigated. For describing the free thermal convection, in the liquid layer the Boussinesq approximation and in the porous layer the Darcy-Boussinesq approximation are used. In the limiting case of a thin liquid layer, effective boundary conditions on the upper boundary of the porous layer with account for convection in the liquid layer are obtained and it is shown that vibration has a stabilizing effect, whereas the presence of a liquid layer leads to destabilization. For an arbitrary liquid to porous layer thickness ratio the onset of convection is investigated numerically. In the case of a thin liquid layer there are two (short-and long-wave) unstable modes. In the case of thick layers the neutral curves are unimodal. Vibration has a stabilizing effect on perturbations with any wave number but affects short-wave perturbations much more strongly than long-wave ones.  相似文献   

18.
The onset of periodic and aperiodic convection in a binary nanofluid saturated rotating porous layer is studied considering constant flux boundary conditions. The porous medium obeys Darcy’s law, while the nanofluid envisages the effects of the Brownian motion and thermophoresis. The Rayleigh numbers for stationary and oscillatory convection are obtained in terms of various non-dimensional parameters. The effect of the involved physical parameters on the aperiodic convection is studied graphically. The results are validated in comparison with the published literature in limiting cases of the present study.  相似文献   

19.
Double-diffusive natural convection in a fluid saturated porous medium has been investigated using the finite element method. A generalised porous medium model is used to study both Darcy and non-Darcy flow regimes in an axisymmetric cavity. Results indicate that the Darcy number should be a separate parameter to understand flow characteristics in non-Darcy regime. The influence of porosity on heat and mass transfer is significant and the transport rates may differ by 25% or more, at higher Darcy and Rayleigh numbers. When compared with the Darcy and other specialised models of Brinkman and Forchheimer, the present generalised model predicts the least heat and mass transfer rates. It is also observed that an increase in radius ratio leads to higher Nusselt and Sherwood numbers along the inner wall.  相似文献   

20.
In this paper two-dimensional incompressible water–Al2O3 nanofluid flow in a confined jet in the laminar flow regime is numerically investigated. A finite volume technique on a collocated grid is employed for discretizing the governing equations by applying the SIMPLE algorithm to link the pressure and velocity fields. The present computations are in a very good agreement with experimental results in open literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号