首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A selective and sensitive method for the simultaneous determination of 14 organophosphate and six phthalate esters using gas chromatography (GC) and mass spectrometry (MS) is presented. Both of these compound classes are frequently found in the indoor environment due to their use as bulk additives in numerous polymers, consumer products and building materials. GC/MS utilizing positive ion chemical ionisation (PICI) in selected reaction monitoring (SRM) mode with isobutane as the reagent gas was found to be the best of the tested methods; it proved superior to electron ionisation (EI) in selected ion monitoring (SIM) mode and to PICI using methane as the reagent gas. The method was applied to indoor air samples collected by active air sampling using solid‐phase extraction (SPE) cartridges. Organophosphates and phthalates were simultaneously determined with method detection limits (MDLs) in the range of 0.1–47 ng m?3. For most compounds the MDLs were ≤0.2 ng m?3, but due to the presence of some of these ubiquitous indoor air pollutants in the blanks, significantly higher MDLs were observed for a few compounds. Finally, the method was also applied in the screening of a much more complex sample matrix, indoor dust. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Methodology for time-weighted average (TWA) air measurements of semivolatile organophosphate triesters, widely used flame-retardants and plasticizers, and common indoor pollutants is presented. Dynamic non-equilibrium solid-phase microextraction (SPME) for air sampling, in combination with GC/PICI and ion trap tandem MS, yields a fast, almost solvent-free method with low detection limits. Methanol was used as reagent gas for PICI, yielding stable protonated molecules and few fragments. A field sampler, in which a pumped airflow over three polydimethylsiloxane (PDMS) 100-μm fibers in series was applied, was constructed, evaluated, and used for the measurements. The method LODs were in the range 2–26 ng m−3 for a sampling period of 2 h. The uptake on the SPME fibers was shown to be about five times faster for triphenyl phosphate compared to the other investigated organophosphate esters, most likely due to more lipophilic properties of the aromatic compound. The boundary layer for triphenyl phosphate when using a 100-μm PDMS sorbent was determined to 0.08 mm at a linear air velocity of 34 cm s−1. Five different organophosphate triesters were detected in air from a laboratory and a lecture hall, at concentrations ranging from 7 ng m−3 up to 2.8 μg m−3.  相似文献   

3.
The explosive triacetone triperoxide (TATP) has been analyzed by gas chromatography/mass spectrometry (GC/MS) and sub-nanogram detection limits are reported by ammonia positive ion chemical ionization (PICI), electron ionization (EI) and methane negative ion chemical ionization (NICI). Analysis by methane PICI and ammonia NICI gave detection limits in the low nanogram range. Analyses were carried out on (linear) quadrupole and ion trap instruments. Analysis of TATP by PICI using ammonia reagent gas is the preferred analytical method, producing low limits of detection as well as an abundant (greater than 60% of base peak) diagnostic adduct ion at m/z 240 corresponding to [TATP + NH4]+. Isolation of the [TATP + NH4]+ ion with subsequent collision-induced dissociation (CID) produces extremely low abundance product ions at m/z values greater than 60, and the m/z 223 ion corresponding to [TATP + H]+ was not observed. Density functional theory (DFT) calculations at the B88LYP/DVZP level indicate that dissociation of the complex to form NH4+ and TATP occurs at energies lower than peroxide bond dissociation, while protonation of TATP leads to cleavage of the ring structure. These results provide a method for pico-gram detection levels of TATP using commercial instrumentation commonly available in forensic laboratories. As a point of comparison, a detection limit of 15 ng was obtained by flame ionization detection.  相似文献   

4.
Isetun S  Nilsson U 《The Analyst》2005,130(1):94-98
A simple setup for dynamic air sampling using a solid-phase microextraction (SPME) device designed for use in the field was evaluated for organophosphate triester vapour under both equilibrium and non-equilibrium conditions. The effects of varying the applied airflows in the sampling device were evaluated in order to optimise the system with respect to the Reynolds number and magnitude of the boundary layer that developed near the surface. Further, the storage stability of the analytes was studied for both capped and uncapped 100-microm PDMS fibres. Organophosphate triesters are utilized on large scales as flame-retardants and/or plasticizers, for instance in upholstered furniture. In indoor working environments these compounds have become common components in the surrounding air. Measurements were performed in a recently furnished working environment and the concentration of tris(2-choropropyl) phosphate was found to be 7 microg m(-3).  相似文献   

5.
A gas chromatographic-mass spectrometric method (GC-MS) for the simultaneous determination of the 'new' antidepressants (mirtazapine, viloxazine, venlafaxine, trazodone, citalopram, mianserin, reboxetine, fluoxetine, fluvoxamine, sertraline, maprotiline, melitracen, paroxetine) and their active metabolites (desmethylmirtazapine, O-desmethylvenlafaxine, m-chlorophenylpiperazine, desmethylcitalopram, didesmethylcitalopram, desmethylmianserin, desmethylfluoxetine, desmethylsertraline, desmethylmaprotiline) in plasma using different ionization modes was developed and validated. Sample preparation consisted of a strong cation exchange mechanism and derivatisation with heptafluorobutyrylimidazole. The GC separation was performed in 24.8 min. Identification and quantification were based on selected ion monitoring in electron (EI) and chemical ionization (CI) modes. Calibration by linear and quadratic regression for electron and chemical ionization, respectively, utilized deuterated internal standards and a weighing factor 1/x(2). Limits of quantitation were established between 5 and 12.5 ng/ml in EI and positive ionization CI (PICI), and 1 and 6.25 ng/ml in negative ionization CI (NICI). During validation stability, sensitivity, precision, accuracy, recovery, and selectivity were evaluated for each ionization mode and were demonstrated to be acceptable for most compounds. While it is clear that not all compounds can be quantitated either due to chromatographic (trazodone) or derivatisation problems (O-desmethylvenlafaxine), this method can quantitate most new antidepressants (ADs) in the therapeutic range using EI. PICI and NICI lead to higher selectivity. Moreover, NICI is of interest for small sample volumes and high sensitivity requirements. This paper draws the attention to the pros and cons of the different ionization modes in the GC-MS analysis of these antidepressants in plasma.  相似文献   

6.
The use of capillary column gas chromatography and gas chromatography/mass spectrometry for the analysis of a series of standard solutions (0.1 to 10 μg/ml) of 2,4,6-trinitrotoluene (TNT) and eight other nitroaromatic components was evaluated. The techniques included gas chromatography with electron capture detection (GC/ECD), full scan and selected ion monitoring gas chromatography/mass spectrometry with electron impact ionization (EI/FS and EI/SIM), full scan and selected ion monitoring gas chromatography/mass spectrometry with positive ion chemical ionization using methane reagent gas (PICI/FS and PICI/SIM), and full scan and selected ion monitoring gas chromatography/mass spectrometry with negative ion chemical ionization using methane reagent gas (NICI/FS and NICI/SIM). The performance of the techniques was comapared by determining the linear response range, precision, and detection limits of the analyses.  相似文献   

7.
A gas chromatography-mass spectroscopic method in electron ionization (EI) mode with MS/MS ion preparation using helium at flow rate 1 ml min(-1) as carrier gas on DB-5 capillary column (30 m x 0.25 mm i.d. film thickness 0.25 microm) has been developed for the determination of benzene in indoor air. The detection limit for benzene was 0.002 microg ml(-1) with S/N: 4 (S: 66, N: 14). The benzene concentration for cooks during cooking time in indoor kitchen using dung fuel was 114.1 microg m(-3) while it was 6.6 microg m(-3) for open type kitchen. The benzene concentration was significantly higher (p < 0.01) in indoor kitchen with respect to open type kitchen using dung fuels. The wood fuel produces 36.5 microg m(-3) of benzene in indoor kitchen. The concentration of benzene in indoor kitchen using wood fuel was significantly (p < 0.01) lower in comparison to dung fuel. This method may be helpful for environmental analytical chemist dealing with GC-MS in confirmation and quantification of benzene in environmental samples with health risk exposure assessment.  相似文献   

8.
Twenty-six methoxylated polybrominated diphenyl ethers (MeO-PBDEs) were characterized by gas chromatography (GC) on four different GC columns with different lengths and polarities, as well as by mass spectrometry using three ionization techniques, electron ionization (EI), electron capture negative ionization (ECNI) and positive ion chemical ionization (PICI). MeO-PBDE congeners with similar retention times on a nonpolar GC column were separated when analyzed on a polar GC column. EI can be used to determine the position of the methoxy substituent (ortho, meta or para) relative to the diphenyl ether oxygen in the MeO-PBDEs. The PICI ionization technique is shown to be valuable to generate structural information of the MeO-PBDEs, i.e. the degree of bromination on both the methoxy-substituted ring and the entirely brominated phenyl ring can be obtained. This structure information can also be achieved for certain MeO-PBDEs with the methoxy group in ortho position to the diphenyl ether bond in ECNI mode. Like other brominated compounds ECNI is preferable when analyzing environmental samples for quantification of MeO-PBDEs because of the formation of bromide ions, which enables low detection limits.  相似文献   

9.
Solid phase micro-extraction (SPME) was used to collect air samples of semi-volatile organophosphate triesters, a group of compounds that are commonly used as flame retardants/plasticisers and have therefore become ubiquitous indoor air pollutants. SPME is a simple sampling technique with several major advantages, including time-efficiency and low solvent consumption. Analyte losses also tend to be relatively low. In quantitative SPME, measurements are normally taken after the analyte has reached partitioning equilibrium between the fibre and the sample matrix. However, equilibrium sampling of semi-volatile compounds in air with SPME often takes several hours. Clearly, time-weighted average (TWA) sampling using SPME under non-equilibrium conditions could be considerably faster. So, in this study, the possibility of sampling organophosphate triesters under non-equilibrium conditions was tested. The most important variables proved to be the fibre coating and the air velocity during sampling. The highest uptake rate was obtained with polydimethylsiloxane (PDMS, 100 m). The rate for this fibre was 150-fold higher than obtained with PDMS/DVB and Carbowax/DVB, both 65 m. Contrary to theoretical expectations, the uptake rate appeared to be constant for all tested air velocities over the fibre surface >7 cm/s. These findings suggest that the uptake rate for non-equilibrium SPME sampling is independent of the sampling flow above this flow rate, which would considerably enhance the robustness and flexibility of the method. Applying this method for TWA sampling, with sampling periods of 1 h, detection limits lower than 2 ng/m3 for individual organophosphate esters were obtained.  相似文献   

10.
As an inexpensive, simple, and low-solvent consuming extraction technique, the suitability of solid-phase microextraction (SPME) with polydimethylsiloxane (PDMS) sorbent was investigated as a quantitative method for sampling gaseous organophosphate triesters in air. These compounds have become ubiquitous in indoor air, because of their widespread use as additive flame retardants/plasticizers in various indoor materials. Results obtained by sampling these compounds at controlled air concentrations using SPME and active sampling on glass fibre filters were compared to evaluate the method. A constant linear airflow of 10 cm s–1 over the fibres was applied to increase the extraction rate. For extraction of triethyl phosphate with a 100-m PDMS fibre, equilibrium was achieved after 8 h. The limit of detection was determined to be less than 10 pg m–3. The PDMS–air partition coefficients, Kfs, for the individual organophosphate triesters were determined to be in the range 5–60×106 at room temperature (22–23°C). Air measurements were performed utilising the determined coefficients for quantification. In samples taken from a lecture room four different airborne organophosphate esters were identified, the most abundant of which was tris(chloropropyl) phosphate, at the comparatively high level of 1.1 g m–3. The results from SPME and active sampling had comparable repeatability (RSD less than 17%), and the determined concentrations were also similar. The results suggest that the investigated compounds were almost entirely associated with the gaseous phase at the time and place sampled.  相似文献   

11.
The abuse of nortestosterone in sport is an important problem in doping-control analysis. In order to detect the main urinary metabolite of nortestosterone, norandrosterone (NA), sensitive and specific methodology is necessary. In this context the use of a low-cost mass spectrometric detector such as the Finnigan MAT ion-trap detector (ITD) was studied. The electron ionization (EI) and positive-ion chemical ionization (PICI) mass spectra of the methoxime-trimethylsilyl, trimethylsilyl-enol trimethylsilyl ether and pentafluoropropionic ester derivatives of NA are described. The limits of detection of these derivatives are compared with those obtained by the Hewlett-Packard mass selective detector (MSD), another low-cost mass spectrometric detector and operating only in the EI mode. For the derivatives of the reference standard of NA the ITD has in the EI mode the same limit of detection, in the range of 0.5 to 1 ng injected on the column, as the MSD. However, under these conditions the ITD provides more spectrometric information, because it gives full scan data. Moreover, with the same or even improved limits of detection the ITD can operate in the PICI mode. On the other hand, for the analysis of NA isolated from urine samples, the performance of the MSD was better than that of the ITD. The ion trapping technique is probably limited when the chemical background is high.  相似文献   

12.
An on-line method for the determination of airborne organophosphate esters based on dynamic sonication-assisted solvent extraction and large-volume injection (LVI) gas chromatography with nitrogen-phosphorous detection is introduced. The LVI is performed with a programmed-temperature vaporizer. The entire extracted fraction of 800 microl (hexane-methyl-tert.-butyl ether, 7:3, v/v) is introduced directly into the GC system without any clean-up step following extraction. The extraction and analysis step were completed in less than 15 min. The limit of detection of the investigated organophosphate esters was established to be in the range of 5-32 pg/filter. The correlation coefficients (r2) were investigated in the linear range study of the entire system and established to be approximately 0.9900 for all the investigated organophosphates esters. Applications of the method was demonstrated with the extraction of air samples collected onto glass fiber filters from different indoor environments. Six organophosphate esters were found at the levels 0.4-138 ng/m3.  相似文献   

13.
The mass spectra of tert-butyldimethylsilyl (TBDMS) derivatives of 17 amino acids were obtained using electron ionization (EI) and atmospheric pressure photochemical ionization (APPhCI) mass spectrometry. The APPhCI mass spectra for all of the derivatives except arginine were shown to consist of only molecular [M](+.) and quasimolecular [MH](+) ions whereas, in the case of EI, the compounds in question underwent a drastic fragmentation. The application of APPhCI to gas chromatography-mass spectrometry enables a reliable identification of the TBDMS derivatives of amino acids in a mixture, even if its components are only partially resolved, due to the unique molecular masses for each compound. Comparison of the respective positive-ion chemical ionization (PICI) mass spectra available in the literature with APPhCI spectra has shown that, in the case of PICI, unlike APPhCI, noticeable fragmentation occurs.  相似文献   

14.
Solid-phase microextraction on-fiber derivatization applied to carbonyl compounds is known, but application to indoor air is poorly developed and the methods deserve to be complemented and optimized. In this work, two derivatization reagents, pentafluorophenylhydrazine and o-2,3,4,5,6-(pentaflurobenzyl)hydroxylamine (PFBHA), and three fiber coatings were tested in order to select the best combination. As Carboxen-based coatings were proven to induce the formation of by-products during the thermal desorption step, a polydimethylsiloxane–divinylbenzene fiber in association with PFBHA was finally chosen. The study of the derivatization kinetics showed that the reaction of PFBHA with carbonyl compounds was instantaneous, except for acetone. Analyses were performed by gas chromatography coupled with flame ionization detection and mass spectrometry. For 5 min fiber exposure, the limits of detection are below 0.5 μg m-3 in selected ion monitoring mode, the reproducibility was 15 % on average, and the linearity of the calibration curves was satisfactory. For on-site application, the influence of air humidity and the conditions in which the impregnated fibers were stored were studied. It is possible to store the fibers for 3 days before and for at least 2 days after sampling. The relative humidity of air was shown to have no influence on solid-phase microextraction sampling in the range from 0 to 70 %. For formaldehyde, the method was compared with sampling on 2,4-dinitrophenylhydrazine cartridges, and the first results showed good agreement. Finally, the method was applied to three different indoor environments to check its feasibility.  相似文献   

15.
A sensitive liquid chromatograph/tandem mass spectrometric technique (LC/MS/MS) was applied to determine aliphatic and aromatic carbonyl compounds in ambient air. Traces of the carbonyl compounds were sampled by passing through a Sep-Pak DNPH-silica cartridge. Their derivatives were thus eluted with acetonitrile, separated by reversed-phase liquid chromatography and determined by quadrupole tandem mass spectrometry in an atmospheric pressure chemical ionization (APCI) mode with multiple reaction monitoring (MRM). The detection limits (DL) of the carbonyl compounds were 0.8 - 15 ng/m3. A number of the carbonyl compounds were detected at n.d.- 14 microg/m3 levels. The precursor ion scanning analysis was applied to identify the unknown compounds.  相似文献   

16.
S Nakamura  M Takino  S Daishima 《The Analyst》2001,126(6):835-839
A method for the trace level determination of 11 phenols as pentafluorobenzyl (PFB) derivatives by gas chromatography-mass spectrometry (GC-MS) with negative-ion chemical ionization (NICI) is described. First, the conditions for the PFB derivatisation of phenols were optimized and were found to be reaction temperature 80 degrees C and reaction time 5 h. Second, the detection limits using selected ion monitoring (SIM) were compared between trimethylsilylated (TMS) derivatives in the electron ionization (EI) mode and PFB derivatives in the NICI mode. The responses for the PFB derivatives in the NICI mode were 3.3-61 times higher than those of the TMS derivatives in the EI mode. The instrumental detection limits using NICI-SIM ranged from 2.6 to 290 fg. This method was applied to the analysis of phenols in river water using solid-phase extraction. The recoveries of the phenols from a river water sample spiked with standards at 100 ng l-1 with 2-chlorophenol, 4-chloro-3-methylphenol and pentachlorophenol and at 1000 ng l-1 with phenol, 2,4-dimethylphenol, 2,4-dichlorophenol, 2-nitrophenol, 2,4,6-trichlorophenol and 4-nitrophenol were 81.2-106.3% (RSD 5.1-8.0%), except for 2-methyl-4,6-dinitrophenol and 2,4-dinitrophenol, for which the recoveries were 5.8 and 4.2%, respectively, because water contained in the acetone eluate interfered with the derivatisation of these compounds with two electrophilic nitro groups.  相似文献   

17.
The suitability of HPLC combined with ion-trap mass spectrometry was studied for the determination of carbonyl-2,4-dintrophenylhydrazones in ambient air. MS quantification was based on two internal standards and atmospheric pressure chemical ionization in the negative-ion mode. Limits of detection for air samples of 750 L in the full-scan mode varied between 1 and 15 ng x m(-3) expressed as carbonyl. Limits of quantification were approximately a factor of three higher. This is sufficient for background regions. For sample volumes of 750 L air the instrument response was linear from 10 ng x m(-3) to 800 microg x m(-3) for carbonyls and from 3 ng x m(-3) to 250 ng x m(-3) for dicarbonyls. Besides complete method validation, quantitative results for six air samples from four background sampling sites in North and Central Europe were compared with those obtained by use of HPLC-UV. Thirty-six carbonyl compounds could be identified and twenty-four were quantified. Values for major compounds, i.e. those present at levels well above the UV detection limits (9 to 18 ng x m(-3)), deviated by less than 20%.  相似文献   

18.
新型单光子电离和光电子电离复合电离源的研究及应用   总被引:4,自引:0,他引:4  
复合电离源在单光子电离模式下可以产生分子离子信号,易于确定分子量;在光电子电离模式下,70 eV电子能量可以产生含有物质结构信息的碎片峰,实现物质的结构鉴定.两种电离模式可以实现毫秒级迅速切换.本研究通过提高光程降低了单光子电离模式下的检出限.在单光子电离模式下,对苯的检出限为50 μg/m3(累加时间为4s);光电子...  相似文献   

19.
Synthetic musks are extensively used as fragrance components in a wide range of consumer and personal care products such as detergents, shampoos, perfumes and other cosmetic products. Amongst them, galaxolide and tonalide have become ubiquitous pollutants due to their continuous releasing into the environment. Because of their nature as artificial fragrances, inhalation should be considered as an important exposure pathway, especially in indoor environments. However, up to now very few studies have been carried out to determine these emergent pollutants indoors. In this work, a simple and highly sensitive methodology for the analysis of synthetic musk fragrances in indoor air samples is presented. The proposed methodology combines solid-phase extraction (SPE) and solid-phase microextraction (SPME), followed by gas chromatography-mass spectrometry (GC/MS). To the best of our knowledge, this is the first method based on SPME for the analysis of musks in air. By active sampling, musks present in air were adsorbed onto 25mg Tenax and then transferred to a SPME fiber in the headspace mode (HS). An experimental design strategy was used to optimize main factors potentially affecting the microextraction process such as fiber coating, temperature and the addition of a microvolume of organic solvent to the solid sorbent prior to SPME. Breakthrough of the SPE sorbent was studied from 1 to 10m(3) without significant losses. Recovery studies were performed at two concentration levels (2 and 20ngm(-3)), obtaining quantitative recoveries (>/=85%) by external calibration. A comprehensive study was performed in order to estimate the limits of detection taking into account the contamination risks and laboratory blanks. Values at the sub ngm(-3) level were achieved for all the target compounds sampling 5m(3) air. External calibration, not requiring the complete sampling process, demonstrated to be suitable for the quantification of all musk compounds. Finally, several indoor environments were analyzed using the proposed method.  相似文献   

20.
Mehmet Akyüz 《Talanta》2007,71(1):486-492
A gas chromatography-mass spectrometry (GC-MS) method has been proposed for the simultaneous determination of aliphatic and aromatic amines in indoor and outdoor air samples. The method includes pre-concentration of the compounds by percolating the air samples through the acidic solution, ion-pair extraction with bis-2-ethylhexylphosphate (BEHPA), derivatisation of compounds with isobutyl chloroformate (IBCF) and their GC-MS analysis. Aliphatic and aromatic amines were isolated from aqueous samples using BEHPA as ion-pair reagent and derivatised with IBCF for their chromatographic analysis. Aliphatic and aromatic amines were then analysed with GC-MS in both electron impact (EI) and positive and negative ion chemical ionisation (PNICI) mode as their isobutyloxycarbonyl (isoBOC) derivatives. The obtained recoveries ranged from 75.6 to 96.8% and the precision of this method, as indicated by the relative standard deviations (R.S.D.) was within the range of 1.0-4.4%. The detection limits obtained from calculations by using GC-MS results based on S/N: 3 were within the range of 0.08-0.01 ng/m3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号