首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure, spectroscopy and electrochemical properties of a novel dinuclear copper(II) complex, [{Cu(phen)2}2(μ-CH3COO)][PF6]3 where phen = 1,10-phenanthroline, is reported. The crystal structure contains two independent Cu(II) ions, with different geometry around each copper center, which are bridged by an acetate anion. The acetate-bridged ligand shows a syn–anti coordination mode with a trigonal bipyramidal geometry for the Cu(1) center and a distorted square-based pyramidal geometry for the Cu(2) center. The angular structural index parameter τ for Cu(1) and Cu(2) is 0.9 and 0.33, respectively. The copper(II) atoms display a different geometry with a N4O chromophore group and with Cu–O distances of 1.993(5)–1.996(5) Å and Cu–N distances which vary from 1.980(5) to 2.161(6) Å. The intra Cu…Cu separation is 4.9904(5) Å. The effective magnetic moment (μeff) of the complex was measured by the Evans method. The cyclic voltammogram of [{Cu(phen)2}2(μ-CH3COO)][PF6]3 shows two waves at positive potential which are assigned to the two Cu(II/I) reduction couples.  相似文献   

2.
The cations in the solid-state structures of meso-(ΛΔ)-[{Ru(bpy)2}2(μ-bpm)](PF6)4, meso-(ΛΔ)-[{Ru(Me2bpy)2}2(μ-bpm)](tos)4 · 2CH3OH · 4H2O and meso-(ΛΔ)-[{Ru(Me4bpy)2}2(μ-bpm)](tos)4 · 26H2O (bpm = 2,2′-bipyrimidine; bpy = 2,2′-bipyridine; Me2bpy = 4,4′-dimethyl-2,2′-bipyridine; Me4bpy = 4,4′,5,5′-tetramethyl-2,2′-bipyridine; tos = toluene-4-sulfonate anion) exhibit similar features including comparable bond lengths and angles, and metal–metal separations of 5.56–5.59 Å. The counter-ions present in the structures reside in the clefts above and below the plane of the bridging ligand, but show considerable variation in location compared with their known occupancy in solution.  相似文献   

3.
Two novel compounds of the formulae [{Cu(phen)2}2(μ-C2O4)][Cu(phen)2(μ-C2O4)NbO(C2O4)2]2 · 8H2O (1) and [{Cu(bpy)2}2(μ-C2O4)][Cu(bpy)2(μ-C2O4)NbO(C2O4)2]2 · 0.5bpy · 7H2O (2) (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) have been prepared and characterized by single crystal X-ray diffraction, IR spectroscopy and magnetic susceptibility measurements. The molecular structure of both 1 and 2 consists of a discrete CuIICuII oxalate-bridged dinuclear [{Cu(L)2}2(μ-C2O4)]2+ cation (A unit) and two CuIINbV oxalate-bridged dinuclear [Cu(L)2(μ-C2O4)NbO(C2O4)2] anions (B units) (L = phen, bpy). In 1 a crystallographic inversion centre is located in the middle of the oxalate bridge of the A unit, whereas in 2 an analogous inversion centre is missing. In the A units the copper(II) atoms adopt a tetragonally elongated octahedral coordination with the equatorial planes being perpendicular to the mean planes of the oxalate bridge and parallel to each other. In both structures, similar one-dimensional motifs are generated through the ligand stacking interactions, with a difference that one free bipyridine molecule, present in 2, intercalates into one of the motifs. It is shown that the phenanthroline ligand, due to its ability of stacking through the central aromatic ring, causes longer intermolecular Cu?Cu distances than the bipyridine ligand. The magnetic susceptibility measurements (1.8–290 K) show the ferromagnetic exchange interaction between the copper(II) atoms in the A units of both compounds, with J = +5.9 cm−1 and +7.9 cm−1 for 1 and 2, respectively (J – the exchange parameter in the isotropic spin Hamiltonian HINT = −JS1 · S2).  相似文献   

4.
Sterically bulky pyrazines have been successfully utilized for the preparation of discrete oligo-nuclear TBP (trigonal bipyramidal), SqP (square pyramidal), and Oh (octahedral) copper(II) complexes. We have synthesized a unique linear pentanuclear complex [{Cu(hfac)2}5(μ-2-butyl-3-methylpyrazine)4]. The two terminal copper(II) ions have a SqP structure while the three inner ions have an Oh one. The solvent molecule was incorporated in the clearance of the lattice. From another reaction under harsh conditions, we separated [{Cu(hfac)2}3(μ-2-butyl-3-methylpyrazine)2], which can be regarded as the central moiety of the pentanuclear one. We also prepared a dinuclear complex [{Cu(hfac)2}2(μ-tetramethylpyrazine)], in which the pyrazine nitrogen atoms were located at TBP equatorial positions. Single-crystal EPR measurements supported its compressed TBP structure. The exchange coupling was antiferromagnetic with JTBP–TBP/kB = −3.6 K. The linear trinuclear [{Cu(hfac)2}3(μ-2,3,5-trimethylpyrazine)2], having two TBP Cu ions with an intervening Oh Cu ion, showed very weak antiferromagnetic coupling. DFT calculations on these compounds indicated that the σ-type orbital overlap between the Cu and N atoms is essential for superexchange interactions.  相似文献   

5.
Copper(I) complexes of short-bite aminobis(phosphonite), PhN{P(–OC10H6(μ-S)C10H6O–)}2 (1) have been synthesized. Reactions of 1 with an excess of CuX (X = Cl, Br, and I) afforded the ligand-bridged binuclear complexes, [PhN(PR-κP)2{Cu(μ-X)(MeCN)}2] (2, X = Cl; 3, X = Br; 4, X = I; R = –OC10H6(μ-S)C10H6O–), whereas treatment with 0.5 equiv. of [Cu(MeCN)4]PF6 produces the mononuclear bischelated cationic complex, [{PhN(PR-κP)2}2Cu](PF6) (5). Single crystal X-ray structures of complexes 3 and 4 are reported. Complex 3 shows strong π–π stacking interactions between the naphthyl moieties, whereas complex 4 shows ligand-supported Cu?Cu metallophilic interactions.  相似文献   

6.
The N4O3 coordinating heptadentate imidazolidinyl phenolate ligand, H3L (2-(2′-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) forms with Cu(II) a rare aqua bridged complex [{Cu2(μ-L)(μ-H2O)}2](ClO4)2 · 4.5H2O (1 · 4.5H2O). Complex 1 · 4.5H2O contains two crystallographically different but chemically equivalent dinuclear [Cu2(μ-L)(μ-H2O)]+ cationic units in the asymmetric unit. The copper atoms of each dinuclear unit are in a distorted square-pyramidal environment and are held together by phenolate, imidazolidinyl and aqua bridges with a Cu···Cu separation of av. 3.34 Å. The compound exhibits a very weak antiferromagnetic exchange interaction (J = −0.77 cm−1, ? = J?1?2) between the two copper(II) (S = 1/2) ions. The 1H NMR spectrum of the complex shows a total of 17 hyperfine shifted peaks, as expected from the idealized Cs symmetry of the compound, spread over a very large window of chemical shift, spanning about 250 ppm. The complex, having an appropriate intermetallic separation for catechol binding, shows catecholase like activity in MeCN at 25 °C, with the aerobic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ).  相似文献   

7.
A novel dinuclear copper(II) complex with the amino acid l-arginine (l-arg), with mono and bidentate HPO42− oxoanions and an OH anion. [Cu2(l-arg)2(μ-HPO4-O)(μ-HPO4-O,O′)(μ-OH)] · (H3O)+ · 6H2O (1) was prepared and its structure was determined by X-ray diffraction methods. The two independent copper ions are in a distorted square pyramidal coordination, each bonded to one l-arginine molecule. These two Cu(l-arg) units are bridged by two monoatomic equatorial–apical oxygen ligands belonging to a monodentate hydrogenphosphate group, and to the hydroxyl group. The copper ions in the dinuclear unit at d = 3.1948(8) Å are also connected by two equatorial oxygen belonging to a bidentate hydrogenphosphate. This dinuclear character and bridging scheme, not common for metal–amino acid compounds, is a consequence of the properties of the phosphate anions. The magnetic susceptibility at temperatures between 2 and 300 K and the isothermal magnetization curves at T = 2.29(1) K with applied fields up to 9 T were measured. The magnetic data indicate an antiferromagnetic intradinuclear exchange coupling J/kB = −3.7(1) K and using a molecular field approximation we estimated a weaker ferromagnetic interaction J′/kB ∼ 0.3 K between neighbour dinuclear units.  相似文献   

8.
A copper(II) and two nickel(II) dinuclear oxalato‐bridged compounds of formulae [{Cu(bpdto)}2(μ‐ox)](ClO4)2 ( 1 ), [{Ni(bpdto)]2(μ‐ox)](ClO4)2( 2 ), and [{Ni(bpdto)}2(μ‐ox)](NO3)2·2H2O ( 3 ), where bpdto = 1, 8‐bis(2‐pyridyl)‐3, 6‐dithiaoctane and ox = oxalate = C2O42— anion, have been synthesized and characterized. The crystal structure of 3 was determined by single‐crystal X‐ray analysis. It is a dinuclear complex with i symmetry in which the oxalate ligand is coordinated in bis(didentate) fashion to the inversion centre‐related nickel atoms. The distorted octahedral environment of each nickel atom is completed by two sulphur atoms in the equatorial plane and by two pyridyl nitrogen atoms in axial positions. Magnetic susceptibility measurements over the range 5 — 299K, show antiferromagnetic interactions that are weak in 1 (J = —12.8 cm—1) and strong in 2 and 3 (J = —37.8 and —40.9 cm—1, respectively), which in the case of 3 is in keeping with the observed structural parameters.  相似文献   

9.
The dinuclear (μ2-acetate)bis(μ2-phenoxide)di-copper(II) complex, 1 with a tetradentate ligand, L (L = 2,4-di-tert-butyl-6-{[(2-dimethylaminoethyl)-(2-hydroxybenzyl)-amino]-methyl}-phenol) has been synthesized and characterized. The single crystal X-ray structure of the dinuclear complex was determined. Variable temperature magnetic susceptibility measurement showed that the two copper(II) centres are strongly anti-ferromagnetically coupled. The structural study revealed that the Cu-Cu distance (2.911 Å) is very close to the distance observed in dinuclear copper(II) acetate. The average Cu-O-Cu angles (∼87°) are found to be the lowest amongst the examples reported so far.  相似文献   

10.
The reaction of [CpRu(CH3CN)3]PF6 with the bidentate ligands L-L=1,2-bis(diphenylphosphino)ethane, dppe, and (1-diphenylarsino-2-diphenylphosphino)ethane, dpadppe, affords mononuclear or dinuclear complexes of formula [CpRu(η2-L-L)(CH3CN)]PF6, [{CpRu(CH3CN)2}2(μ-η1:1-L-L)](PF6)2 and [{CpRu(CH3CN)}2(μ-η1:1-L-L)2](PF6)2 (L-L=dppe, dpadppe). All of the compounds are characterized by microanalysis and NMR [1H and 31P{1H}] spectroscopy. The crystal structure of [{CpRu(CH3CN)2}2(μ-η1:1-dppe)](PF6)2 has been determined by X-ray diffraction analysis. The complex exhibits a dppe ligand bridging two CpRu(CH3CN)2 fragments.  相似文献   

11.
The role of ancillary ligands, namely imidazole (im), pyridine (py), 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen) in the assembly of copper(II) dipicolinate complexes are presented. Mononuclear complexes are observed in the case of monodentate ligands. The mononuclear complex [Cu(im)3L]·4H2O (1) (L = dipicolinate anion) has a distorted octahedral structure with Z′ = 2, whereas [CuL(py)(H2O)]·2H2O (2) adopts distorted square pyramidal geometry. The bidentate ligands bpy and phen favor the formation of dinuclear complexes. The dinuclear complex [CuL(bpy)(μ-L)Cu(bpy)(H2O)]·9H2O (3) has one carbonyl oxygen atom of a carboxylate group of dipicolinate acting as a bridging ligand to the copper site that is devoid of a coordinated water molecule. The complex has an angle of 83.55° between the plane of L and bpy attached to one copper site, whereas it has an angle of 78.13° between the plane L and bpy attached to the other copper site. A 1,10-phenanthroline containing dinuclear copper(II) dipicolinate complex, [Cu(phen)(H2O)(μ-L)Cu(phen)2][CuL2]·12H2O (4), has been structurally characterized. It has an unusual carboxylate bridge.  相似文献   

12.
Reduction by NaBH4 of the imine functions of (5,7,7,13-tetramethyl-13-nitro-1,4,8,11-tetraazacyclotetradec-4-ene)-nickel(II) and -copper(II), and of their 13-ethyl-5,7,7-trimethyl-homologues, yield the nitro-substituted cyclic tetraamine cations (5,5,7,13-tetramethyl-13-nitro-1,4,8,11-tetraazacyclotetradecane)-nickel(II) and -copper(II), [M(neh)]2+, and (13-ethyl-5,5,7-trimethyl-homologues, [M(nph)]2+, respectively. The nickel(II) cations form square–planar, singlet ground, state salts with poorly coordinating anions and octahedral, triplet ground state, compounds with additional ligands, trans-β-[Ni(neh)A2], A = Cl, NCS and trans-β-[Ni(neh)A2](ClO4)2, X = NH3, MeCN, all with nitrogen configuration III, 1R,4R,8S,11S = β. With oxalate the chain-polymeric compound catena-trans-β-[Ni(neh)(μ-C2O4)]n · 3n(H2O) is formed. Folded macrocycle compounds cis-α-[Ni(neh)(C5H7O2)]ClO4 and cis-α-[{Ni(neh)}2(C2O4)](ClO4)2 are formed with the chelates acetylacetonate and oxalate, with configuration 1R,4R,8R,11R = α. These react with HClO4 to form metastable α-[Ni(neh)](ClO4)2 with retention of configuration. The copper(II) cations form crimson salts with poorly coordinating anions and compounds of the type β-[Cu(neh)A]ClO4 of varying shades of blue with coordinating anions. Structures of singlet ground state square–planar nickel(II) compounds β-[Ni(neh)](ClO4)2 · H2O, β-[Ni(neh)](ClO4)2, β-[Ni(neh)]2[ZnCl3(OH2)]2[ZnCl4] · H2O and α-[Ni(neh)](ClO4)2, the triplet ground state chain-polymeric compound catena-trans-β-[Ni(neh)(μ-C2O4)]n · 3n(H2O) and of square–pyramidal β-[Cu(nph)Cl]ClO4 are reported.  相似文献   

13.
A compound with a linear trinuclear copper(II) cation, [Cu3(μ-protan)2](ClO4)2·H2O (protanH2 = 3,7-bis(3-hydroxypropyl)-1,3,5,7-tetraazabicyclo[3,3,1]-nonane) is formed by reaction of copper(II) perchlorate, 3-aminopropanol, ammonia and methanal. The cation is approximately centrosymmetrical with Cu?Cu = 2.9870(5) and 2.9485(5) Å. The terminal copper(II) ions are coordinated by nitrogen atoms 3 and 7 of the tetraazabicycle (Cu–Nmean = 2.021(5) Å) and the two oxygen atoms of the 3,7-bis(3-olatopropyl) substituents (Cu–Omean = 1.911(3) Å), which also act as bridging groups to the central copper(II) ion (Cu–Omean = 1.926(4) Å). The cation is both helically twisted (dihedral angle N3?N7?N3′?N7′ = 20(1)°) and bent (angle Cu?Cu?Cu = 171(1)°). The copper(II) ions have tetrahedrally twisted square planar primary coordination, with perchlorate ion oxygen atoms weakly coordinated axially to the two terminal copper(II) ions, on opposite sides of the “plane” of the molecule, while the central copper(II) ion is weakly coordinated axially by a water molecule, with all axial Cu–O distances ca. 2.9 Å. One N·CH2·CH2·CH2·O chelate ring for each protan2− ligand shows conformational disorder and the perchlorate ions show rotational disorder. Partial hydrolysis of the protan2− compound gave a compound [{Cu(μ-protan)}Cu(OH)2](ClO4)2·0.5(EtOH) which has a dinuclear cation, with one copper(II) ion in square-planar coordination by tetradentate protan2− and the other in square-planar coordination by the two bridging oxygen atoms of the protan2− ligand and by two hydroxide ions, with Cu?Cu = 3.045(1) Å. With differing mole ratios of the same reactants compounds of the dinuclear cation [{Cu(μ-pta)}2]2+ (ptaH = 3(3-hydroxypropyl)-1,3,5,7-tetraazabicyclo[3,3,1]nonane) are formed.  相似文献   

14.

The tris-(bidentate)chelate complexes [Cu(NN)3](PF6)2 where NN=2,2'-bipyridine or 1,10-phenanthroline have been isolated as secondary products in the reaction between the dimers [{Cu(NN)}2(μ-OH)2](PF6)2·2H2O and di-2-pyridylketone. the X-ray crystal structure of [Cu(phen)3](PF6)2 showed a distorted octahedral C 2 geometry around teh metal atom, with two Cu-N distances being much longer than the other four. Magnetic susceptibility measurements (in the 4.4-290K range) correspond, in both cases, to a d9 configuration without significant magnetic interaction. A signal (g=2.102) was observed in the EPR spectrum of the bipy complex and the two axial components were resolved for the phen complex, with g||=2.249, g=2.083 and A||=137 x 10-4cm-1. In this case also a signal at g=2.128 is observed.  相似文献   

15.
Three dinuclear and one mononuclear copper(II)-1,10-phenanthroline ternary complexes, [Cu(L1)(phen)(OH)]2 (1), [Cu(L2)(phen)(OH)]2·3H2O (2), [Cu(L3)(phen)(OH)]2 (3) and [Cu(L4)2(phen)(H2O)] (4), with thiadiazole sulfonamide derivative ligands: HL1 (N-(5-ethyl-1,3,4-thiadiazol-2-yl)naphthalene-1-sulfonamide), HL2 (N-(5-ethylthio)-1,3,4-thiadiazol-2-yl)-4-methylbenzenesulfonamide), HL3 (N-(5-ethyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide) and HL4 (N-(5-ethyl-1,3,4-thiadiazol-2-yl)-4-methylbenzenesulfonamide) have been synthesized and characterized. In the four complexes each copper atom is five-coordinated. The structure of complexes 1, 2 and 3 consists of a dimeric unit with a C2 symmetry axis, where both coppers are bridged by two hydroxo anions. Magnetic measurements show that the dimer complexes are ferromagnetic according to the Cu–O–Cu angles. Cleavage experiments using pUC18 plasmid DNA in the presence of H2O2/ascorbic acid as an activating agent show that the title complexes are potent artificial chemical nucleases, the order of efficiency being 3 > 2 ∼ 1 > 4. Control cleavage experiments indicated that the dimer complexes are stronger artificial nucleases than the [Cu(phen)2]2+ complex under the same experimental conditions, while the monomer 4 has a lower nuclease activity than the [Cu(phen)2]2+ complex. The inhibition of the cleavage process in the presence of reactive oxygen intermediate scavengers suggests that the hydroxyl radical and the superoxide anion are reactive species for the breakage of the DNA strands.  相似文献   

16.
Zou  Jianzhong  Wu  Yong  Duan  Chunyin  Liu  Yongjiang  Xu  Zheng 《Transition Metal Chemistry》1998,23(3):305-308
Three binuclear copper(II) complexes bridged by three different bridging ligands: μ-TPHA (terephthalato), μ-PHTA (phthalato) and μ-TCB (tetracarboxylatobenzene) have been synthesized. The crystal structure of [{Cu(dipn)}2(μ-TPHA)](ClO4)2 where dipn = N-(3-aminopropyl)-1,3-propanediamine was solved at room temperature. The [{Cudipn}2(μ-TPHA)](ClO4)2 complex consists of a μ-terephthalato bridging binuclear copper(II) cationic unit and two non-coordinated perchlorate anions. The TPHA ligand bridges in a bismonodentate fashion. The environment of the copper(II) ion is a distorted plane-square-planar coordination sphere. The magnetic properties of the three complexes have been investigated in the 75–300 K range, and show that the geometry of the CuII atom is the important factor for magnetic interactions in the terephthalato bridging binuclear copper(II) complexes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Several Cu(II) complexes with 1,2,4-triazolo[1,5-a]pyrimidine (tp) and its 5,7-dimethyl derivative (dmtp) have been isolated and structurally characterized. Five of them are mononuclear and contain 1,10-phenanthroline (phen) or ethylenediamine (en) as auxiliary ligands, their formula being [Cu(H2O)(phen)(tp)2](ClO4)2 · H2O, [Cu(H2O)(phen)(dmtp)2](ClO4)2, [Cu(NO3)(H2O)(phen)(tp)](NO3), [Cu(H2O)2(en)(tp)2](ClO4)2 and [Cu(H2O)2(en)(dmtp)2](ClO4)2. In all these compounds the tp or dmtp ligand is monodentately coordinated via the nitrogen atom in position 3. The auxiliary ligand influences the coordination number, which is five when this ligand is phen and six when it is en whereas the number of triazolopyrimidine ligands linked to the metal seems to be influenced by the nature of the counteranion. A dinuclear compound with tp has also been isolated, its formula being [Cu2(OH)(H2O)2.5(tp)5](ClO4)3·(H2O)1.5, with both metal atoms linked by an hydroxydo group and by a tp bridging ligand, coordinated to one of the copper atoms via N3 and to the other via N4. This compound has several unusual features among the metal complexes with triazolopyrimidine derivatives: the presence of two different kinds of bridging moieties, the coexistence of bridging and terminal ligands and the formation of a N3–N4 bridge for a Cu(II) dinuclear compound for a derivative without exocyclic oxygen atoms.  相似文献   

18.
A dinuclear copper(II) [(LCu)(MeOH)Cu(phen)(MeOH)]ClO4·NO3 macrocyclic complex (where H2L = 2,3-dioxo-5,6:15,16-dibenzo-1,4,8,13-tetraazacyclo-pentadeca-7,13-diene; phen = 1,10-phenanthroline) has been synthesized and characterized by means of elemental analysis and its i.r. spectrum. Its crystal structure has been determined by single-crystal X-ray diffraction. In the complex, both the copper ions are penta-coordinated and have a distorted square pyramid configuration. Magnetic susceptibility measurements show antiferromagnetic exchange interactions (J = –207.64 cm–1) between the copper(II) ions.  相似文献   

19.
The synthesis and crystal structure elucidation of a novel dinuclear heteroleptic copper(II) complex has led to an alternative mechanism in the formation of covalent hydrates. During further studies on the synthesis and properties of [Cu2(ophen)2] ( 1 ), a dinuclear complex of copper(I) with 1 H‐[1,10]‐phenanthrolin‐2‐one (Hophen), two intermediates/alternative products 2 and 3 were isolated. The dinuclear, antiferromagnetic complex [Cu2(ophen)2(phen)2] ? (NO3)2 ? 9H2O ( 3 , phen=1,10‐phenanthroline) contains two five‐coordinate copper(II) ions, both with trigonal‐bipyramidal coordination, which are bridged together through deprotonated hydroxyl groups with a Cu? Cu non‐bonding distance of 3.100 Å. Complex [Cu(phen)2(H2O)] ? (NO3)2 ( 2 ) is a polymorph of a previously reported material. The occurrence of 2 and 3 has led us to propose a variation to the Gillard mechanism for the formation of covalent hydrates in bidentate N‐heterocycles in which the attacking nucleophile may be the deprotonated form of 2 , [Cu(phen)2(OH)]?, rather than free OH?.  相似文献   

20.
Four new solvent-induced Cu(II) complexes with the chemical formulae [{Cu(HL)(CH3OH)}2Cu] · CH3OH (1), [{(Cu(HL))2(CH3CH2OH)2}Cu] (2), [{CuL(H2O)}2Cu2] · 2CH3CH2CH2OH (3) and [{(Cu(HL))2(CH3CH2CH2CH2OH)2}Cu] (4), where H4L = 6,6′-dihydroxy-2,2′-[ethylenediyldioxybis(nitrilomethylidyne)]diphenol, have been synthesized and characterized by elemental analyses, 1H NMR, FT-IR, UV–Vis spectra, TG-DTA, molar conductances and X-ray crystallography. Complexes 1, 2 and 4 have an elongated square-pyramidal geometry with an unusually long bond from the penta-coordinated Cu(II) centres to the oxygen atoms of the apically coordinated solvent (methanol, ethanol or n-butanol) molecules for the terminal Cu(II) ions, and a square planar geometry distorted tetrahedrally for the central Cu(II) ion. In complex 3, the terminal Cu(II) ions have trigonal bipyramidal coordination geometries constituted by equatorial O2N donor sites, with one oxygen atom from one of the coordinated water molecules and one nitrogen atom from a completely deprotonated L4− ligand unit in the axial positions, and the central Cu(II) ions are in slightly tetrahedrally distorted square planar geometries constituted by four phenoxo oxygen donors from two completely deprotonated L4− ligand units, and these form a tetrametal Cu–O–Cu–O–Cu–O–Cu–O eight-membered ring. These four complexes exhibit strong hydrogen bonding interactions in the solid state. Moreover, co-crystallizing n-propanol molecules link two other adjacent complex molecules into a self-assembled infinite 2D supramolecular structure via the intermolecular hydrogen bonds in complex 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号