首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 778 毫秒
1.
In this work, the synthesis and characterization of fac-[Re(CO)3(Nqphen)(L)]PF6 complexes is reported. Nqphen is the quinone substituted acceptor ligand [3,2-a:2′,3′-c]-benzo[3,4]-phenazine-11,16-quinone, and L represents the donor monodentate pyridine substituted ligands 4-tert-butylpyridine (t-Bupy), 4-methoxypyridine (MeO-py) or 10-(4-picolyl)phenothiazine (py-PTZ). The complexes were synthesized by refluxing in methanol the metal precursor fac-Re(CO)3(Nqphen)TfO (TfO = trifluoromethanesulphonate anion) with the corresponding L ligand. The UV-Vis spectra of the complexes are dominated by intense intraligand (IL) bands, and less intense metal ligand charge transfer (MLCT) bands with maxima in the 380-400 nm region. The IR shows the typical pattern for tricarbonyl Re complexes with facial (fac) geometry. An additional v(CO) stretching band, attributed to the quinone fragment of Nqphen, is observed.Electrochemical data indicate that the acceptor capacity of Nqphen is increased in the complexes with regard to the free ligand. This effect is sensitive to the nature of the L ligand, following the order: MeO-py < t-Bupy < py-PTZ, indicating therefore that the donor capacity of L affects the rest of the molecule. The results obtained for the fac-[Re (CO)3(Nqphen)(pyPTZ)]PF6 complex here reported were compared with those observed for the homologous complex fac-[Re(CO)3(Aqphen)(L)]0/+, with Aqphen = 12,17-dihydronaphtho[2,3-h]dipyrido[3,2-a:2′,3′-c]-phenazine-12,17-dione, and L = Cl, TfO, py-PTZ.  相似文献   

2.
Hetero- and homo-leptic Ru(II) complexes of a new 4,4′-bipyrimidine ligand, th2bpm (6,6′-di(2″-thienyl)-4,4′-bipyrimidine), have been synthesized and characterized. The parent ligand th2bpm has electron rich thiophene units on the periphery of a bidentate ligand which is capable of binding to metal ions. The heteroleptic complex of th2bpm [Ru(bpy)2th2bpm]2+ (bpy = 2,2′-bipyridine) exhibits a Ru-to-bpm metal-to-ligand charge transfer (MLCT) absorption centered at 547 nm and a Ru-to-bpy MLCT absorption centered at 438 nm. The assignment of the low energy absorption is supported by the relative ease of electrochemical reduction of the new complex as compared to [Ru(bpy)3]2+. The homoleptic complex, [Ru(th2bpm)3]2+, exhibits a Ru-to-bpm MLCT absorption at slightly higher energy (544 nm). Both complexes are emissive at room temperature in fluid solution and 5 is one of the lowest energy emitters based on tris-bidentate Ru(II) complexes known (λmax = 770 nm). The luminescence spectra is red-shifted compared to [Ru(bpy)3]2+ and this effect is ascribed to the delocalization in the acceptor ligand.  相似文献   

3.
The Re(I) complexes bearing 2,6-bis(7-azaindolyl)phenyl ligand as a tridentate ligand were synthesized by treatment with Re2(CO)10. The structures of the complexes were confirmed by X-ray crystallography. Both 7-azaindolyl ligands of Re(I) complexes are present in butterfly forms. The Re-Cipso bonds showed a partial double bond character by π back-donation between the phenyl moiety and Re atom. In THF solution at room temperature, these complexes exhibited green emission (λem=510 nm), which is considered to be attributable to MLCT (dz2(Re) →π* (7-azaindolyl group)) transition containing π→π* (7-azaindolyl group) transition.  相似文献   

4.
Reactions of bis(pyridin-2-yl)ketone with tin tetrahalides, SnX4 (X = Cl or Br), or organotin trichlorides, RSnCl3 (R = Ph, Bu or CH2CH2CO2Me), in ROH (R = Me or Et) readily produces RObis(pyridin-2-yl)methanolato)tin complexes, [5: RO(py)2C(OSnX3)] (5: R,X = Me,Cl; Et,Cl; Et,Br) or [6: MeO(py)2C(OSnCl2R)] (R = Ph, Bu, CH2CH2CO2Me). In addition, halide exchange reaction between SnI4 and (5: R,X = Me,Cl) occurred to give (5: R,X = Me,I). The crystal structures of six tin(IV) derivatives indicated, in all cases, a monoanionic tridentate ligand, [RO(py)2C(O)-N,O,N], arranged in a fac manner about a distorted octahedral tin atom. The Sn–O and Sn–N bonds lengths do not show much variation amongst the six complexes despite the differences in the other ligands at tin.  相似文献   

5.
Reaction of five N,N′-bis(aryl)pyridine-2,6-dicarboxamides (H2L-R, where H2 denotes the two acidic protons and R (R = OCH3, CH3, H, Cl and NO2) the para substituent in the aryl fragment) with [Ru(trpy)Cl3](trpy = 2,2′,2″-terpyridine) in refluxing ethanol in the presence of a base (NEt3) affords a group of complexes of the type [RuII(trpy)(L-R)], each of which contains an amide ligand coordinated to the metal center as a dianionic tridentate N,N,N-donor along with a terpyridine ligand. Structure of the [RuII(trpy)(L-Cl)] complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on the [RuII(trpy)(L-R)] complexes shows a Ru(II)–Ru(III) oxidation within 0.16–0.33 V versus SCE. An oxidation of the coordinated amide ligand is also observed within 0.94–1.33 V versus SCE and a reduction of coordinated terpyridine ligand within −1.10 to −1.15 V versus SCE. Constant potential coulometric oxidation of the [RuII(trpy)(L-R)] complexes produces the corresponding [RuIII(trpy)(L-R)]+ complexes, which have been isolated as the perchlorate salts. Structure of the [RuIII(trpy)(L-CH3)]ClO4 complex has been determined by X-ray crystallography. All the Ru(III) complexes are one-electron paramagnetic, and show anisotropic ESR spectra at 77 K and intense LMCT transitions in the visible region. A weak ligand-field band has also been shown by all the [RuIII(trpy)(L-R)]ClO4 complexes near 1600 nm.  相似文献   

6.
The diamagnetic nickel mononitrosyl complexes (TmR)Ni(NO) (R = But, p-Tol) and (BmR)Ni(PPh3)(NO) (R = Me, But) have been readily prepared from Ni(PPh3)2(NO)Br and the appropriate Na(TmR) or Na(BmR) reagents, respectively. These species constitute the first nickel nitrosyl complexes supported by these ligand systems. An X-ray diffraction study of (Tmp-Tol)Ni(NO) confirmed its pseudo-tetrahedral geometry and the presence of a nearly linear nitrosyl ligand. In contrast, (BmMe)Ni(PPh3)(NO) can be best described as having a trigonal pyramidal geometry, a spatial arrangement unprecedented in nickel nitrosyl chemistry, which is facilitated by the disposition of the BmMe ligand and the presence of a weak intramolecular Ni?H–B interaction opposite to the apical triphenylphosphine ligand.  相似文献   

7.
[Cu(H2L)(PPh3)2]NO3 · 0.5H2O (2) and [Ag(H2L)(PPh3)2]NO3 · 0.5H2O (3) complexes of a new flexible thioamide ligand; N,N′-ethane-1,2-bis(4-methoxyphenyl)carbothioamide H2L (1) have been synthesized using PPh3 as a coligand. The synthesized compounds have been characterized with the help of elemental analyses, IR, 1H, 13C and 31P NMR spectroscopy. The ligand and its Cu(I) complex have been studied by single crystal X-ray crystallography. The ligand acts as a neutral S-donor and forms a nine-membered chelate ring in [Cu(H2L)(PPh3)2]NO3 · 0.5H2O. The molecular packing is stabilized by an anionic cavity formed by intermolecular hydrogen bonding between the basal plane of the complex molecule and the nitrate ions. The square shaped columnar channel has dimensions of 5.489(25) [N(11)–H(11A)?O(13)?H(21A)N(21)] × 3.693(7) [N(11)–C(11)–C(21)–N(21)] Å.  相似文献   

8.
The reactions of N-(aryl)pyridine-2-aldimines (L-R; R = OCH3, CH3, H, Cl and NO2), derived from pyridine-2-aldehyde and para-substituted anilines, with CuI in methanol under ambient conditions afford a series of brown complexes of the type [{Cu(L-R)I}2]. The structure of the [{Cu(L-OCH3)I}2] complex has been determined by X-ray crystallography. In these dimeric complexes the two copper centers are linked through an iodo-bridge, and the L-R ligands are coordinated to the metal center through the pyridine-nitrogen and imine-nitrogen. All the complexes show characteristic 1H NMR signals and intense MLCT transitions in the visible region. These complexes also show an emission near 465 nm, whilst they are excited at 340 nm, with relatively poor quantum yields (φ ∼0.002 at 298 K). Cyclic voltammetry on all the complexes shows two successive Cu(I)-Cu(II) oxidations on the positive side of SCE, and a reduction of the coordinated imine ligand on the negative side. These copper(I) complexes are found to efficiently catalyze Suzuki type C-C coupling reactions.  相似文献   

9.
The diiron complexes [Fe(Cp)(CO){μ-η22-C[N(Me)(R)]NC(C6H3R′)CCH(Tol)}Fe(Cp)(CO)] (R = Xyl, R′ = H, 3a; R = Xyl, R′ = Br, 3b; R = Xyl, R′ = OMe, 3c; R = Xyl, R′ = CO2Me, 3d; R = Xyl, R′ = CF3, 3e; R = Me, R′ = H, 3f; R = Me, R′ = CF3, 3g) are obtained in good yields from the reaction of [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(p-NCC6H4R′)(Cp)2]+ (R = Xyl, R′ = H, 2a; R = Xyl, R′ = Br, 2b; R = Xyl, R′ = OMe, 2c; R = Xyl, R′ = CO2Me, 2d; R = Xyl, R′ = CF3, 2e; R = Me, R′ = H, 2f; R = Me, R′ = CF3, 2g) with TolCCLi. The formation of 3 involves addition of the acetylide at the coordinated nitrile and C-N coupling with the bridging aminocarbyne together with orthometallation of the p-substituted aromatic ring and breaking of the Fe-Fe bond. Complexes 3a-e which contain the N(Me)(Xyl) group exist in solution as mixtures of the E-trans and Z-trans isomers, whereas the compounds 3f,g, which posses an exocyclic NMe2 group, exist only in the Z-cis form. The crystal structures of Z-trans-3b, E-trans-3c, Z-trans-3e and Z-cis-3g have been determined by X-ray diffraction experiments.  相似文献   

10.
Transition metal complexes with ligands based on dipyrido[3,2-a:2′,3′-c]phenazine (dppz) have been synthesized. As metal fragments the [Ru(bpy)2]+, Re(CO)3Cl and the [Cu(PPh3)2]+ moieties have been used. The complexes containing amino- or bis(bromomethyl) substituted dppz ligands can be used for fullerene-based donor-bridge-acceptor dyads. The electronic absorption spectra of these complexes and of the dppz ligands were investigated. The dppz ligands show strong absorptions in the 300 and 390 nm region. An additional absorption band in the visible region (∼440 nm) is observed for the amino-substituted dppz-ligands. Ruthenium complexes exhibited broad absorption bands at 350-500 nm arising from intraligand-based transitions and the MLCT transition. MLCT transitions of the Re(I) and Cu(I) complexes are observed as shoulders of the stronger ligand-based absorption band tailing out to 400-500 nm. The electrochemically active complexes and ligands were studied by cyclic voltammetry and square-wave voltammetry. All ligands show one first reversible one-electron reduction located at the phenazine portion. These reductions are shifted to more positive redox potentials upon complexation. Oxidation potentials for reversible processes could be determined for the Ru2+/Ru3+ couple. For rhenium(I) and copper(I) complexes one irreversible oxidation process is observed.  相似文献   

11.
Three new N2S2 donor ligands 1,1′-((2-(2-(phenylthio)phenylthio)phenyl)methylene)bis(3,5-R-1H-pyrazole), R = H (LH), R = Me (LMe), R = i-Pr (Li-Pr) have been prepared and characterized. These bifunctional ligands incorporate two distinct chelate donor systems, by virtue of the presence of bispyrazole and bisthioether functions. The preferred conformation of these ligands is such that the N2 and S2 donor moieties may be oriented in opposite directions, thus favoring the formation of molecular chains when treated with AgBF4. The X-ray structures of Ag(I) complexes show that, depending on the steric hindrance present on the pyrazole rings, these ligands behave as κ4-SSNN-μ bridging tetradentate (when R = H), or κ3-SNN-μ bridging tridentate (when R = Me, i-Pr). Interestingly, [Ag(LH)]BF4 crystallizes in the chiral space group P41, with the molecular chain that is folded around the 41 screw axis.  相似文献   

12.
Photoirradiation of a toluene solution of [ReH(CO)3(L)] [S. Bolaño, J. Bravo, R. Carballo, S. García-Fontán, U. Abram, E.M. Vázquez-López, Polyhedron 18 (1999) 1431-1436] [L = 1,2-bis(diphenylphosphinoxy)ethane] in the presence of PPhn(OR)3−n (n = 0, 1; R = Me, Et) leads to the replacement of a CO ligand by the corresponding monodentate phosphite or phosphonite ligand to give new hydride compounds of formula [ReH(CO)2(L)(L′)] [L′ = P(OMe)3 (1); P(OEt)3 (2); PPh(OMe)2 (3); PPh(OEt)2 (4)]. Protonation of compounds 1-4 in CD2Cl2, with HBF4.OMe2 or with HOOCCF3 at 193 K in a NMR tube, gave the corresponding dihydrogen complexes. When the temperature was increased from 193 to 293 K, the η2-H2 ligand was replaced by OMe2 or OOCCF3 groups (depending on the acid employed) to give new stable complexes and the loss of H2 gas.  相似文献   

13.
New μ-vinylalkylidene complexes cis-[Fe2{μ-η13-Cγ(R′)Cβ(R″)CαHN(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = R″ = Me, 3a; R = Me, R′ = R″ = Et, 3b; R = Me, R′ = R″ = Ph, 3c; R = CH2Ph, R′ = R″ = Me, 3d; R = CH2Ph, R′ = R″ = COOMe, 3e; R = CH2 Ph, R′ = SiMe3, R″ = Me, 3f) have been obtained b yreacting the corresponding vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(R″)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (2a-f) with NaBH4. The formation of 3a-f occurs via selective hydride addition at the iminium carbon (Cα) of the precursors 2a-f. By contrast, the vinyliminium cis-[Fe2{μ-η13-Cγ (R′) = Cβ(R″)Cα = N(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (R′ = R″ = COOMe, 4a; R′ = R″ = Me, 4b; R′ = Prn, R″ = Me, 4c; Prn = CH2CH2CH3, Xyl = 2,6-Me2C6H3) undergo H addition at the adjacent Cβ, affording the bis-alkylidene complexes cis-[Fe2{μ-η12-C(R′)C(H)(R″)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], (5a-c). The cis and trans isomers of [Fe2{μ-η13-Cγ(Et)Cβ(Et)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (4d) react differently with NaBH4: the former reacts at Cα yielding cis-[Fe2{μ-η13-Cγ(Et)Cβ(Et)CαHN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], 6a, whereas the hydride attack occurs at Cβ of the latter, leading to the formation of the bis alkylidene trans-[Fe2{μ-η12-C(Et)C(H)(Et)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (5d). The structure of 5d has been determined by an X-ray diffraction study. Other μ-vinylalkylidene complexes cis-[Fe2{μ-η13-Cγ(R′)Cβ(R″)CαHN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], (R′ = R″ = Ph, 6b; R′ = R″ = Me, 6c) have been prepared, and the structure of 6c has been determined by X-ray diffraction. Compound 6b results from treatment of cis-[Fe2{μ-η13-Cγ(Ph)Cβ(Ph)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (4e) with NaBH4, whereas 6c has been obtained by reacting 4b with LiHBEt3. Both cis-4d and trans-4d react with LiHBEt3 affording cis-6a.  相似文献   

14.
Schiff’s base condensation of 2,6-diformyl-4-R-phenol and affords 34-membered macrocyclic tetraiminodiphenol compounds, (R = H and R′ = iPr, 1; R = Me and R′ = iPr, 2; R = F and R′ = iPr, 3; R = Me and R′ = Et, 4; R = F and R′ = Et, 5) in good yields (47-62%), from which dinuclear nickel complexes, (R = H and R′ =  iPr, 6; R = Me and R′ = iPr, 7; R = F and R′ = iPr, 8) are prepared. Molecular structures of 2, dipotassium salt of 1, and 7 were confirmed by X-ray crystallography. Addition of B(C6F5)3 to a toluene solution of 6-8 gives insoluble precipitates which show good activity for ethylene polymerization.  相似文献   

15.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

16.
Electronic structure calculation techniques (DFT) have been used to decipher the bonding of the trihalide ligands in a series of homo- and hetero-trihalide Cu(II) Schiff base complexes formulated as [Cu(RdienR)(X)(XY2)] (RdienR = Schiff base; R = furan, thiophene or pyrrol; X = Cl or Br; Y = Cl, Br or I). The association of the incoming Y2 halogen molecule with one of the halide X ligands of the precursor [Cu(RdienR)(X)2] complexes alters their distorted trigonal bipyramidal stereochemistry which is transformed to a distorted square pyramidal geometry. The bonding mechanism between the halogen Y2 molecule and the halide X ligand was thoroughly explored by means of various electronic parameters and charge decomposition analysis techniques. The bond dissociation energy of the Cu–XY2 bond, BDECu–XY2BDECuXY2, was estimated in the range of 61.9–68.4 kcal/mol, while the bond dissociation energy of the X–Y2 bond, BDECu–XY2BDECuXY2, was found in the range of 10.6–12.5 kcal/mol. It was found that the X?Y2 interactions correspond to weak hyperconjugative donor–acceptor interactions between a non-bonding n(X) molecular orbital (donor orbital) localized on the coordinated halide X ligand and an antibonding σ(Y–Y) molecular orbital (acceptor orbital) localized on the Y2 halogen molecule. The n(X) → σ(Y–Y) donor–acceptor interactions are associated with a second-order perturbation stabilization energy, ΔE(2) of 34.5–52.5 kcal/mol. The loose association of the halogen molecules with the coordinated halide ligand renders the [Cu(RdienR)(X)(XY2)] complexes good halogen carrier molecules.  相似文献   

17.
The zwitterionic vinyliminium complex [Fe2{μ-η13-C(R′)C(S)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (2a) (R′ = p-Me-C6H4 (Tol), Xyl = 2,6-Me2C6H3) undergoes electrophilic addition at the S atom by HSO3CF3, MeSO3CF3, SiMe3Cl, BrCH2Ph, ICH2CHCH2 affording the complexes [Fe2{μ-η13-C(Tol)C(SX)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][Y] (X =  H, Y = SO3CF3, 4a; X = Me, Y = SO3CF3, 4b; X = SiMe3, Y = Cl, 4c; X = CH2Ph, Y = Br, 4d; X = CH2CHCH2, Y = I, 4e).Compound 2a and the corresponding vinyliminium complexes 2b and 2c (R′ = CH2OH, 2b; R′ = Me, 2c) react also with etherated BF3 leading to the formation of the corresponding S-adducts [Fe2{μ-η13-C(R′)C(SBF3)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (R′ = Tol, 5a; R′ = CH2OH, 5b; R′ = Me, 5c).In analogous reactions, the zwitterionic vinyliminium complexes undergo S-metalation upon treatment with in situ generated [Fp]+[SO3CF3] [Fp = Fe(CO)2(Cp)], leading to the formation of [Fe2{μ-η13-C(R′)C(S-Fp)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3](R′ = CH2OH, 6a; R′ = Me, 6b; R′ = Bun, 6c).Similarly, zwitterionic vinyliminium containing Se in the place of S also undergo Se-electrophilic addition. Thus, the complexes [Fe2{μ-η13-C(R′)C(SeX)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = X = Me, R′ = Tol, 7a; R = Xyl, R′ = Me, X = Fp+, 7b) are obtained upon treatment of the neutral zwitterionic precursors with MeSO3CF3 and [Fp][SO3CF3], respectively.Alkylation at the S or Se atom of the bridging ligand is also accomplished by CH2Cl2, used as solvent, although the reaction is slower compared to more efficient alkylating reagents. The complexes formed by this route are [Fe2{μ-η13-C(R′)C(E-CH2Cl)CN(Me)(R)}(μ-CO)(CO)(Cp)2][X] [E = S, R = Xyl, R′ = Tol, X = Cl, 8a; E = S, R = Xyl, R′ = Me, X = Cl, 8b; E = Se, R = R′ = Me, X = BPh4, 8c].Finally, treatment of the zwitterionic vinyliminium complexes with I2 results in the oxidative coupling with formation of S-S (disulfide) or Se-Se (diselenide) bond. The reactions, performed in the presence of NaBPh4 afford the tetranuclear complexes [Fe2{μ-η13-C(R′)C(E)CN(Me)(R)}(μ-CO)(CO)(Cp)2]2[BPh4]2 [R = Xyl, R′ = CH2OH, E = S, 9a; R = Xyl, R′ = Me, E = S, 9b; R = Xyl, R′ = Bun, E = S, 9c; R = Xyl, R′ = Me, E = Se, 9d; R = Me, R′ = Bun, E = Se, 9e].The molecular structures of 4a, 8c and 9e have been determined by X-ray diffraction studies.  相似文献   

18.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

19.
The ligating properties 1-(2′-pyridylazo)-2-naphthol (HPAN) toward Rh(III) have been examined. The reaction of RhCl3·3H2O with HPAN in presence of excess PPh3 afforded trans-[Rh(PAN)Cl(PPh3)2]PF6 (3PF6). Intermediate cis-[Rh(PAN)Cl2(PPh3)] (4) has also been isolated. Solid state structures were authenticated by X-ray analyses revealing that monoanionic PAN is coordinated to rhodium in meridional fashion. Both the compounds were spectroscopically characterized in both solution and solid states, which include IR, NMR (1H and 31P), and optical spectra. The diamagnetic complexes show multiple CT transitions in the visible region. Low-energy transitions (λ ≈ 550–650 nm) occurred in the absorption spectra are predominantly ligand centered in nature. The rhodium(III)–PAN compounds are red emissive (λem ≈ 650 nm) at room temperature and the nature of the emission level is probably an ILCT level. Complexes are electro-active in acetonitrile and display irreversible oxidative and reductive waves and these responses are ascribed to be PAN ligand centered in character.  相似文献   

20.
Primary alkynes R′CCH [R′ = Me3Si, Tol, CH2OH, CO2Me, (CH2)4CCH, Me] insert into the metal-carbon bond of diruthenium μ-aminocarbynes [Ru2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] [R = 2,6-Me2C6H3 (Xyl), 1a; CH2Ph (Bz), 1b; Me, 1c] to give the vinyliminium complexes [Ru2{μ-η13-C(R′)CHCN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] [R = Xyl, R′ = Me3Si, 2a; R = Bz, R′ = Me3Si, 2b; R = Me, R′ = Me3Si, 2c; R = Xyl, R′ = Tol, 3a; R = Bz, R′ = Tol, 3b; R = Bz, R′ = CH2OH, 4; R = Bz, R′ = CO2Me, 5a; R = Me, R′ = CO2Me, 5b; R = Xyl, R′ = (CH2)4CCH, 6; R = Xyl, R′ = Me, 7a; R = Bz, R′ = Me, 7b; R = Me, R′ = Me, 7c]. The related compound [Ru2{μ-η13-C[C(Me)CH2]CHCN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3], (9) is better prepared by reacting [Ru2{μ-CN(Me)(Xyl)}(μ-CO)(CO)(Cl)(Cp)2] (8) with AgSO3CF3 in the presence of HCCC(Me)CH2 in CH2Cl2 at low temperature.In a similar way, also secondary alkynes can be inserted to give the new complexes [Ru2{μ-η13-C(R′)C(R′)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Bz, R′ = CO2Me, 11; R = Xyl, R′ = Et, 12a; R = Bz, R′ = Et, 12b; R = Xyl, R′ = Me, 13). The reactions of 2-7, 9, 11-13 with hydrides (i.e., NaBH4, NaH) have been also studied, affording μ-vinylalkylidene complexes [Ru2{μ-η13-C(R′)C(R″)C(H)N(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Bz, R′ = Me3Si, R″ = H, 14a; R = Me, R′ = Me3Si, R″ = H, 14b; R = Bz, R′ = Tol, R″ = H, 15; R = Bz, R′ = R″ = Et, 16), bis-alkylidene complexes [Ru2{μ-η12-C(R′)C(H)(R″)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (R′ = Me3Si, R″ = H, 17; R′ = R″ = Et, 18), acetylide compounds [Ru2{μ-CN(Me)(R)}(μ-CO)(CO)(CCR′)(Cp)2] (R = Xyl, R′ = Tol, 19; R = Bz, R′ = Me3Si, 20; R = Xyl, R′ = Me, 21) or the tetranuclear species [Ru2{μ-η12-C(Me)CCN(Me)(Bz)}(μ-CO)(CO)(Cp)2]2 (23) depending on the properties of the hydride and the substituents on the complex. Chromatography of 21 on alumina results in its conversion into [Ru2{μ-η31-C[N(Me)(Xyl)]C(H)CCH2}(μ-CO)(CO)(Cp)2] (22). The crystal structures of 2a[CF3SO3] · 0.5CH2Cl2, 12a[CF3SO3] and 22 have been determined by X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号