首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A template 2:2:4 condensation of 2,6-diformyl-4-methyl-phenol, triethylenetetramine and zinc acetate gave rise to the crystallisation of [{Zn4(H4L1)(OAc)4}{Zn(OAc)3(H2O)}(OAc)] · 7H2O (1 · 7H2O), being H6L1 a macrocyclic diphenolate Schiff base ligand. Changing some operation conditions, other template reactions yielded dinuclear complexes of the type Zn2(Ln)(OAc) · xH2O, where H3Ln (n = 2, 3) are podant triphenolate Schiff base ligands derived from a 3:1 condensation of the corresponding 2,6-diformyl-4-alkyl-phenol (alkyl = Me or But, respectively) and triethylenetetramine. After recrystallisation, these two latter complexes could be X-ray characterised as Zn2(L2)(OAc) · 1.25H2O · 0.5MeCN (2 · 1.25H2O · 0.5MeCN), and Zn2(L3)(OAc) (3). Furthermore, after addition of a 3:1 molar ratio of 2-amino-4-methyl-phenol to 3, this underwent imidazolidine hydrolysis and a double imine condensation, yielding Zn2(L4)(OAc)(HOAc) · 2H2O (4 · 2H2O), where H3L4 is an acyclic pentadentate Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-tert-butyl-phenol and 2-amino-4-methyl-phenol.  相似文献   

2.
A series of binuclear Co(II), Ni(II) and Cu(II) complexes were synthesized by the template condensation of glyoxal, biacetyl or benzil bis-hydrazide, 2,6-diformyl-4-methylphenol and Co(II), Ni(II) or Cu(II) chloride in a 2:2:2 M ratio in ethanol. These 22-membered macrocyclic complexes were characterized by elemental analyses, magnetic, molar conductance, spectral, thermal and fluorescence studies. Elemental analyses suggest the complexes have a 2:1 stoichiometry of the type [M2LX2nH2O and [Ni2LX22H2O]·nH2O (where M = Co(II) and Cu(II); L = H2L1, H2L2 and H2L3; X = Cl; n = 2). From the spectroscopic and magnetic studies, it has been concluded that the Co(II) and Cu(II) complexes display a five coordinated square pyramidal geometry and the Ni(II) complexes have a six coordinated octahedral geometry. The Schiff bases and their metal complexes have also been screened for their antibacterial and antifungal activities by the MIC method.  相似文献   

3.
N-(2-Hydroxybenzyl)aminopyridines (Li) react with Cu(II) and Pd(II) ions to form complexes in the compositions Cu(Li)2(CH3COO)2 · nH2O (n = 0, 2, 4), Pd(Li)2Cl2 · nC2H5OH (n = 0, 2) and Pd(L2)2Cl2 · 2H2O. In the complexes, the ligands are neutral and monodentate which coordinate through pyridinic nitrogen. Crystal data of the complexes obtained from 2-amino pyridine derivative have pointed such a coordinating route and comparison of the spectral data suggests the validity of similar complexation modes of other analog ligands. Cu(II) complex of N-(2-hydroxybenzyl)-2-aminopyridine (L1), [Cu(L1)2(CH3COO)2] has slightly distorted square planar cis-mononuclear structure which is built by two oxygen atoms of two monodentate carboxylic groups disposed in cis-position and two nitrogen atoms of two pyridine rings. The remaining two oxygen atoms of two carboxylic groups form two Cu and H bridges containing cycles which joint at same four coordinated copper(II) ion. IR and electronic spectral data and the magnetic moments as well as the thermogravimetric analyses also specify on mononuclear octahedric structure of complexes [Cu(L2)2(CH3COO)2 · 2H2O] and [Cu(L3)2(CH3COO)2 · 4H2O] where L2 and L3 are N-(2-hydroxybenzyl)-2- or 3-aminopyridines, respectively.  相似文献   

4.
Three novel Schiff base Cd(II) trimeric complexes, [Cd3(L1)2(SCN)2(CF3COO)2] (1), [Cd3(L1)2(SCN)2(HCONMe2)] (2) and [Cd3(L2)2{N(CN)2}2] (3) have been prepared from two different symmetrical Schiff bases H2L1 and H2L2 (where H2L1 = N1,N3-bis(salicylideneimino)diethylenetriamine, a potentially pentadentate Schiff base with a N3O2 donor set, and H2L2 = N1,N3-bis(3-methoxysalicylideneimino)diethylenetriamine, a potentially heptadentate Schiff base with a N3O4 donor set). All the complexes have been synthesised under similar synthetic procedures and their crystal structures have been established by single crystal X-ray diffraction methods. The ligands and their metal complexes have been characterised by analytical and spectroscopic techniques. Among the three complexes, 1 and 3 are linear whereas 2 is a cyclic trimer. In 1 and 3, all the doubly phenoxo bridged Cd(II) metal centres are in a distorted octahedral environment. In complex 2, two of the three Cd(II) centres reside in a distorted octahedral environment and the remaining one enjoys a monocapped octahedral geometry. Altogether the variety in the bridging mode of two new salen-type ligands has been established through these complexes.  相似文献   

5.
The template reaction of 2,6-diacetylpyridine with biogenic diamine–putrescine in the presence of cadmium(II), mercury(II) or lead(II) ions produces the complexes of 22-membered macrocyclic ligand L1 with an N6 set of donor atoms as a result of [2 + 2] Schiff base cyclocondensation. The lead(II) complex containing Schiff base acyclic ligand L2 terminated by one carbonyl and one amine group as product of the partial [2 + 2] condensation has been also isolated and might be regarded as possible intermediate in the formation of the macrocyclic L1 complex. Analogous reaction involving the uranyl nitrate generates the complex containing the same Schiff base acyclic ligand L2 as a final product of template reaction. The complexes were characterized by spectral data (IR, 1H NMR, FAB-MS), thermogravimetric and elemental analyses. A notable feature of the FAB mass spectrum of the uranyl complex is the appearance of the clusters of the form [(UO2) n O]+(n= 1–7) along with the peak corresponding to molecular ion.  相似文献   

6.
The DNA cleavage activities of nickel(II) ion and four closely related macrocyclic nickel(II) complexes NiL1 ∼ NiL4 in the absence of any added redox cofactors are compared and the structure of NiL3 methanol solvate has been characterized by single crystal X-ray analysis, where L1 ∼ L4 are the dianions of tetraazamacrocyclic oxamido Schiff bases. In NiL3·MeOH, the macrocyclic [N4] ligand coordinates to the central Ni(II) ion forming a distorted square–planar geometry. The adjacent mononuclear molecules are linked by O–H?O hydrogen bonds and Ni?O and Ni?L van der Waals forces into 2D supramolecular structure. Agarose gel electrophoresis studies indicate that the ability of these nickel(II) complexes to cleave DNA is highly dependent upon the ligand employed. In the absence of any added oxidizing agents, only NiL3 is a relatively good DNA cleavage agent, and the process of plasmid DNA cleavage is much sensitive to ionic strength and pH value. The NiL3-mediated DNA cleavage reaction is a typical pseudo-first-order consecutive reaction, and the rate constants of 0.148 ± 0.007 h−1 (k1) and 0.0118 ± 0.0018 h−1 (k2) for the conversion of supercoiled to nicked DNA and nicked to linear DNA are obtained in presence of 0.5 mmol L−1 NiL3. The results of DNA cleavage experiments, combining with those of circular dichroism (CD) and fluorescence spectroscopy indicate that the main binding modes between DNA and the complexes should be groove binding and electrostatic interaction.  相似文献   

7.
Four novel molecular square grids were achieved by self-assembly using the flexible ligands bis(di-2-pyridyl ketone) thiocarbohydrazone (H2L1), bis(quinoline-2-carbaldehyde) thiocarbohydrazone (H2L2), bis(di-2-pyridyl ketone) carbohydrazone (H2L3) and bis(2-benzoylpyridine) carbohydrazone (H2L4). Three complexes were given a general formula of [Ni(HL)]4[PF6]4 · nH2O and one [Ni2(HL2)L2]2(PF6)2 · 7H2O. The MALDI-MS spectra reveal the formation of tetranuclear molecular squares. The square grid of the Ni(II) centers in all the complexes were organized by deprotonated ligands. The complex [Ni(HL1)]4[PF6]4 · 11H2O crystallized as [Ni(HL1)]4(PF6)4 · 0.5 CH3CH2OH · 2.8H2O and X-ray study revealed octahedral geometries around the Ni(II) centers. Variable temperature magnetic studies suggest intramolecular antiferromagnetic coupling between the Ni(II) electrons by a super exchange mechanism through intervening sulfur/oxygen atoms.  相似文献   

8.
Cobalt(II), nickel(II), copper(II) and zinc(II) complexes of 2-thiophenecarbonyl hydrazone of 3-isatin (H2L1) and 2-furoic hydrazones of 3-isatin (H2L2) and 3-(N-methyl)isatin (HL3), with general composition [M(L)2] · nX, where X is ethanol or/and water, were synthesised and characterised. The molecular structure of HL3 showed that it crystallised in the keto form, which is also the more abundant tautomer for the three hydrazone ligands in solution. The three ligands behave as κ2-O,N donors in the cobalt(II) and zinc(II) complexes. The X-ray crystal structure of pseudotetrahedral [Zn(HL1)2] · 1.75MeOH confirmed the O,N coordination mode of the two monodeprotonated ligands in their keto forms. Secondary interactions of zinc ions with the O atoms of each isatin keto residue provoke a substantial distortion towards a square pyramidal form. The interaction of the isatin keto residues is stronger in the three nickel(II) complexes where the three acylhydrazones can be considered as κ3-O,N,O donors.  相似文献   

9.
Schiff bases of 1′-hydroxy-2′-acetonaphthone (HAN) containing chalcogen functionalities, 1-HO-C10H6-2-CH3)CN-(CH2)nEC6H4-4-R (R = H or OMe; n = 2 or 3; E = S (L1-L2), Se (L3-L4) or Te (L5-L6)) have been synthesized in yield 90-95%. They show characteristic 1H, 13C{1H} 77Se{1H} and 125Te{1H} (in case of selenated and tellurated species, respectively) NMR spectra. Their complexation with Pd(II), Pt(II), Hg(II) and (p-cymene)Ru(II) has been explored. The single-crystal structures of ligands L1, L3 and L6 and complexes of Pd(II) with L1, L2, L3 and L5 have been determined. The geometry of Pd is close to square planar in all the complexes and the ligands coordinate in a uni-negative tridentate mode. The Pd-N bond lengths are in the range 1.996(7)-2.019(5) ?. The Pd-Se bond distance is 2.3600(5) ? whereas Pd-Te is 2.5025(7) ?. The Pd(II) complexes of L1-L5 have been found promising as homogeneous catalyst for Heck and Suzuki reactions. The yields obtained were up to 85%.  相似文献   

10.
The synthesis, structure, spectroscopic and electro-spectrochemical properties of sterically constrained Schiff-base ligands (LnH) (n = 1, 2, and 3) (L = N-[m-(methylmercapto)aniline]-3,5-di-t-butylsalicylaldimine, m = 4, 3, and 2 positions, respectively) and their copper(II) complexes [Cu(Ln)2] are described. Three new dissymmetric bidentate salicylaldimine ligands containing a donor set of ONNO were prepared by reaction of different primary amine with 3,5-di-t-butyl-2-hydroxybenzaldehyde (3,5-DTB). The copper(II) metal complexes of these ligands were synthesized by treating an methanolic solution of the appropriate ligand with an equimolar amount of Cu(Ac)2 · H2O. The ligands and their copper complexes were characterized by FT-IR, UV–Vis, 1H and 13C NMR and elemental analysis methods in addition to magnetic susceptibility, molar conductivity, and spectroelectrochemical techniques. Analytical data reveal that copper(II) metal complexes possess 1:2 metal–ligand ratios. On the basis of molar conductance, the copper(II) metal complexes could be formulated as [Cu(Ln)2] due to their non-electrolytic nature in dimethylforamide (DMF). The room temperature magnetic moments of [Cu(Ln)2] complexes are in the range of 1.82–1.90 B.M which are typical for mononuclear of Cu(II) compounds with a S = 1/2 spin state. The complexes did not indicate antiferromagnetic coupling of spin at this temperature. Electrochemical and thin-layer spectroelectrochemical studies of the ligands and complexes were comparatively studied in the same experimental conditions. The results revealed that all ligands displayed irreversible reduction processes and the cathodic peak potential values of (L3H) are shifted towards negative potential values compared to those of (L1H) and (L2H). It is attributed to the weak-electron-donating methyl sulfanyl group substituted on the ortho (m = 2) position of benzene ring. Additionally, all copper complexes showed one quasi-reversible one-electron reduction process in the scan rates of 0.025–0.50 V s−1, which are assigned to simple metal-based one-electron processes; [Cu(2+)(Ln)2] + e → [Cu(1+)(Ln)2]. The spectral changes corresponding to the ligands and complexes during the applied potential in a thin-layer cell confirmed the ligand and metal-based reduction processes, respectively.  相似文献   

11.
Three dinickel(II) macrocyclic complexes [Ni2L(μ-OAc)]ClO4•X (L = L1, L2 and L3) with two 2-thiophenoethyl pendant arms, have been synthesized by cyclocondensation between N,N-bis(3-aminopropyl)-2-thiophenoethylamine and 2,6-diformyl-4-R-phenol (where R = Me, Cl and F and X = MeOH, 2MeCN and H2O, respectively), in the presence of nickel(II) ions. The complexes were characterized by elemental analysis, spectroscopic methods and X-ray diffraction techniques. The geometry around both of the Ni(II) ions in each molecule is a slightly distorted octahedral and the thiopheno groups do not coordinate to the Ni(II) ions, resulting that the complexes display contorted saddle-form configurations. The distances between the Ni?Ni centers for the complexes are 3.145, 3.171 and 3.155 Å, respectively. The influences of the substituted groups R in the benzene rings of the macrocyclic units on the structure, electrochemistry, magnetism, cleavage and antibacterial property to DNA have been investigated. The ES-MS results of the complexes confirm that [Ni2L]2+ species in methanol solution are very stable because all the peaks in ES-MS spectra contain this kind of units. The reduction potentials of the complexes shift towards anode upon increasing the drawing electronic ability of substituted groups. Magnetic measurements in the 2-300 K range indicate weak antiferromagnetism for the dinuclear Ni(II) complexes and the magnetic exchange interactions enhance with the decrease of the Ni-Ni distances. These complexes exhibit cleavage activities towards plasmid pBR322 DNA and antibacterial activities.  相似文献   

12.
Two new isomorphous tetranuclear complexes [Cu4L2(4,4′-bipy)2]·(ClO4)4·2CH3CN·2H2O (1) and [Zn4L2(4,4′-bipy)2]·(ClO4)3·CH3O·4H2O (2) have been obtained and fully characterized (where bipy = bipyridine, H2L = macrocycle is the [2+2] condensation product of 2,6-diformyl-4-fluoro-phenol and 1,4-diaminobutane). They exhibit wheel-like configuration in which two 4,4′-bipy molecules connect two dinuclear [M2L]2+ units. The interactions of the complexes with calf thymus DNA were studied by UV-Vis and CD spectroscopic techniques. The binding constants of 1 and 2 are 2.27 × 106 and 3.89 × 105 M−1, respectively. The magnetic measurement of 1 reveals that there are strong antiferromagnetic coupling (J = -272.6 cm−1) between two Cu(II) ions in the macrocyclic unit and ferromagnetic interaction (j′ = 41.7) between the Cu(II) ions in two adjacent macrocyclic units. Furthermore, the cyclic voltammogram of 1 shows that it undergoes two quasi-reversible processes with the half wave potentials -0.232 and -0.606 V, respectively.  相似文献   

13.
The condensation of 3-amino-1H-1,2,4-triazole with benzaldehyde and terephthalaldehyde provides the bidentate and tetradentate Schiff bases 1,2,4-triazolo-3-imino-benzene L1H and 1,4-bis(1,2,4-triazolo-3-imino)benzene L2H2, respectively. The well characterized Schiff bases were allowed to react with cis-Ru(bpy)2Cl2 · 2H2O. Isomers of the mononuclear complexes Ru(bpy)2L1]PF6 · NH4PF6 (1a, N4) and [Ru(bpy)2L1]PF6 · 0.5NH4PF6 (1b, N2), and the dinuclear Ru(II) complexes [Ru(bpy)2L2Ru(bpy)2](PF6)2 · NH4PF6 (2a, N4N4), [Ru(bpy)2L2Ru(bpy)2](PF6)2 · NH4PF6 · 2H2O (2b, N2N2) and [Ru(bpy)2L2Ru(bpy)2](PF6)3 · NH4PF6 (2c, Ru(II)-Ru(III)) were separated by column chromatography and characterized by their elemental analysis, FAB mass and spectral (IR, NMR, UV–Vis) data. The data obtained suggest that the ligands are bound to the metal centre via the N4 and N2 atoms of the triazole moiety along with the N (imine) atom. The complexes display metal-to-ligand charge-transfer (MLCT) transitions in the visible region from the dπ(RuII) → πL transition. Highly intense ligand-based π→π transitions are observed in the UV region. A dual emission occurs from the N2 and N2N2 isomers.  相似文献   

14.
Two new reduced Schiff base ligands, [HL1 = 4-{2-[(pyridin-2-ylmethyl)-amino]-ethylimino}-pentan-2-one and HL2 = 4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical Schiff bases derived from 1:1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L1)]ClO4 (1), [Cu(L1)]ClO4 (2), [Ni(L2)]ClO4 (3), and [Cu(L2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L1 and L2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes. Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two CuII complexes (2 and 4) exhibit both irreversible reductive (CuII/CuI; Epc, −1.00 and −1.04 V) and oxidative (CuII/CuIII; Epa, +1.22 and +1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated CuI species for both the complexes are unstable and undergo disproportionation.  相似文献   

15.
We have designed and synthesized three new metal-1,1′-ferrocenedicarboxylate complexes containing tetrametallic macrocyclic building units, namely, [Cd22-O2CFcCO22)2(phen)2(H2O)2] · 4CH3OH (1) (Fc = (η5-C5H4)Fe(C5H45), phen = 1,10-phenanthroline), {[Cd(η2-O2CFcCO2)(pebbm)(H2O)] · 2H2O}n (2) (pebbm = 1,1′-(1,5-pentanediyl)bis-1H-benzimidazole) and {[Cd(η2-O2CFcCO22)(prbbm)(H2O)] · 3H2O}n (3) (prbbm = 1,1′-(1,3-propanediyl)bis-1H-benzimidazole). Compound 1 is a 0-D discrete tetrametallic macrocyclic framework. Compound 2 features an infinite 1-D ribbon of rings structure constructed by the subsidiary ligands pebbm connecting tetrametallic macrocyclic building units. For 3, its tetrametallic macrocyclic building units are linked by the subsidiary ligands prbbm to form a 2-D network structure. The structural features of these complexes indicate that the ferrocenedicarboxylate tetrametallic macrocycle can be used as a successful molecular building unit and the shapes and conformational flexibility of subsidiary ligands play a crucial role in the manipulation of the configuration of the resultant MOFs. Their fluorescence spectra in solid state at room temperature suggest that the fluorescence emissions of 1-3 are ruled by 1,1′-ferrocenedicarboxylate ligand.  相似文献   

16.
A hyphenated ion-pair (tetrabutylammonium chloride—TBACl) reversed phase (C18) HPLC-ICP-MS method (High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectroscopy) for anionic Rh(III) aqua chlorido-complexes present in an HCl matrix has been developed. Under optimum chromatographic conditions it was possible to separate and quantify cationic Rh(III) complexes (eluted as a single band), [RhCl3(H2O)3], cis-[RhCl4(H2O)2], trans-[RhCl4(H2O)2] and [RhCln(H2O)6−n]3−n (n = 5, 6) species. The [RhCln(H2O)6−n]3−n (n = 5, 6) complex anions eluted as a single band due to the relatively fast aquation of [RhCl6]3− in a 0.1 mol L−1 TBACl ionic strength mobile phase matrix. Moreover, the calculated t1/2 of 1.3 min for [RhCl6]3− aquation at 0.1 mol kg−1 HCl ionic strength is significantly lower than the reported t1/2 of 6.3 min at 4.0 mol kg−1 HClO4 ionic strength. Ionic strength or the activity of water in this context is a key parameter that determines whether [RhCln(H2O)6−n]3−n (n = 5, 6) species can be chromatographically separated. In addition, aquation/anation rate constants were determined for [RhCln(H2O)6−n]3−n (n = 3-6) complexes at low ionic strength (0.1 mol kg−1 HCl) by means of spectrophotometry and independently with the developed ion-pair HPLC-ICP-MS technique for species assignment validation. The Rh(III) samples that was equilibrated in differing HCl concentrations for 2.8 years at 298 K was analyzed with the ion-pair HPLC method. This analysis yielded a partial Rh(III) aqua chlorido-complex species distribution diagram as a function of HCl concentration. For the first time the distribution of the cis- and trans-[RhCl4(H2O)2] stereoisomers have been obtained. Furthermore, it was found that relatively large amounts of ‘highly’ aquated [RhCln(H2O)6−n]3−n (n = 0-4) species persist in up to 2.8 mol L−1 HCl and in 1.0 mol L−1 HCl the abundance of the [RhCl5(H2O)]2− species is only 8-10% of the total, far from the 70-80% as previously proposed. A 95% abundance of the [RhCl6]3− complex anion occurs only when the HCl concentration is above 6 mol L−1. The detection limit for a Rh(III) species eluted from the column is below 0.147 mg L−1.  相似文献   

17.
Two novel macrocyclic tetra-imine-diphenol Schiff base (H2L1 and H2L2) were synthesized by [2 + 2] cyclocondensation of ortho-aminophenyl diamines [1,2-bis(2′-aminophenoxy)benzene (I) and 1,2-bis(2′-aminophenoxy)-4-t-butylbenzene (II)] with 2,6-diformyl-4-methylphenol. Two novel tetra-amine-diphenol macrocycles (H2L3 and H2L4) have been obtained by reduction of the imine analogs with NaBH4 in MeOH/CHCl3.  相似文献   

18.
The synthesis and physico-chemical characterization of Fe(II) and Mn(II) complexes of 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfanyl]acetic acid (HLI) and 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfinyl]acetic acid (HLII) were carried out. The investigation of the molecular and electronic structure of Cu(II), Ni(II), Zn(II), Fe(II) and Mn(II) complexes has been performed within the density functional theory (DFT) framework. The computed properties were compared to the experimental ones, and molecular structures of the compounds were proposed based on the array of spectral data and quantum chemical calculations. Antibacterial activity of the Fe(II) and Mn(II) complexes was evaluated in comparison with Cu(II), Co(II), Ni(II) and Zn(II) complexes and three standard antibiotics; it was found to follow the order: (1) Сu(LI)2 > Mn(LI)2 > HLI > Ni(LI)2 > Zn(LI)2 > Fe(LI)2 > Co(H2O)2LI; (2) Cu(LII)2 > Сo(LII)2 > Ni(LII)2 > Mn(H2O)2(LII)2 > Fe(LII)2 > HLII > Zn(LII)2; their reducing ability (determined electrochemically) followed the same order. Spectrophotometric investigation was carried out in order to estimate the rate of the reduction of bovine heart сytochrome c with the ligands and their metal(II) complexes. The complexes Сu(LI)2, Mn(LI)2 and Co(LII)2 with the high reducing ability were found to be characterized by the highest rates of Cyt с reduction. NADPH:cytochrome P450-reductase had no substantial effect on the rate of сytochrome c reduction with HLI and HLII ligands.  相似文献   

19.
Two new coordination polymers of Robson-type macrocycles, [Cu2L1(μ-ClO4)2] (1) and [Cu2L2(μ-ClO4)2] (2) (where H2L1and H2L2 are the [2+2] condensation products of 2,6-diformyl-4-flurophenol with 1,3-diaminopropane and 2-hydroxy-1,3-diaminopropane, respectively), have been synthesized and characterized. The intriguing feature is that intermolecular perchlorato bridges occur between adjacent copper(II) centers. The cyclic voltammograms of the complexes show that each complex undergoes two pseudo-reversible processes with the half wave potentials, −0.361 V and −0.729 V for 1, and −0.372 V and −0.744 V for 2, respectively. Magnetic susceptibility was measured for 1 and 2 over a temperature range of 2–300 K. The optimized magnetic data were J = −359.6 cm−1, j′ = −30 cm−1 and R = 6.8 × 10−8 for 1 and = −411 cm−1, j′ = −26 cm−1 and R = 2.4 × 10−7 for 2, respectively. The data reveal antiferromagnetic couplings between the copper(II) ions of intra- and intermolecular units.  相似文献   

20.
A novel tetranuclear complex, [Cu4L4] · Na · ClO4 (1) has been prepared from an interesting multidentate Schiff base ligand H2L resulting from the 1:1 condensation of 3-methoxysalicylaldehyde with benzhydrazide. The prepared complex has been characterized by elemental analysis, FT-IR, UV–Vis spectroscopy, electrochemical studies and single crystal X-ray diffraction analysis. The Cu4O4 cubane core consists of four μ3-phenoxo-bridged copper(II) atoms giving an approximately cubic array of alternating copper(II) and oxygen atoms. Magneto-structural correlations have been drawn from cryomagnetic susceptibility measurements over a wide range of temperature (2–300 K) under 0.5 T magnetic field. The measurements reveal both ferromagnetic and antiferromagnetic interactions in a 2J model [J11 = +13.6(4) cm−1 and J12 = −34.9(4) cm−1] which in turn results in an overall antiferromagnetic behaviour of the magnetic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号