首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Reactions of [Ru(PPh3)3Cl2] with 2-(benzylimino-methyl)-4-R-phenol (HRL, R = H, Cl, Br and OMe) in boiling methanol in presence of triethylamine afford ruthenium(II) complexes of general formula [Ru(RL)(PPh3)2(CO)Cl] in 57-64% yield. Microanalysis, spectroscopic (infrared, electronic and NMR) and cyclic voltammetric measurements have been used for the characterization of the complexes. Crystal structures of two representative complexes have been determined by X-ray crystallography. The carbonyl, the chloride, the N,O-donor RL and the two mutually trans PPh3 molecules assemble a distorted octahedral CClNOP2 coordination sphere around the metal centre in each complex. The complexes display the Ru(II) → Ru(III) oxidation in the potential range 0.62-1.16 V (vs. Ag/AgCl).  相似文献   

2.
Reaction of 1-(2′-pyridylazo)-2-naphthol (Hpan) with [Ru(dmso)4Cl2] (dmso = dimethylsulfoxide), [Ru(trpy)Cl3] (trpy = 2,2′,2″-terpyridine), [Ru(bpy)Cl3] (bpy = 2,2′-bipyridine) and [Ru(PPh3)3Cl2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)2], [Ru(trpy)(pan)]+ (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)2(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. In each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)]+ and [Ru(bpy)(pan)(pic)]+ complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d6, S = 0) and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)–Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)2] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy)(pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation.  相似文献   

3.
Ortho-metallated ruthenium(III) complexes with Schiff bases (H2L) derived from one mole equivalent each of benzaldehyde and acid hydrazides are described. Reactions of H2L with [Ru(PPh3)3Cl2] in presence of NEt3 (1:1:2 mole ratio) under aerobic conditions in methanol provide the complexes having the general formula trans-[Ru(L)(PPh3)2Cl] in 55-60% yields. The complexes have been characterized with the help of elemental analysis, magnetic susceptibility, electrochemical and various spectroscopic (infrared, electronic and EPR) measurements. The +3 oxidation state of the metal centre in these complexes is confirmed by their one-electron paramagnetic nature. Molecular structures of two representative complexes have been determined by X-ray crystallography. In each complex, the metal ion is in a distorted octahedral CNOClP2 coordination sphere. The dianionic C,N,O-donor ligand (L2−) together with the chloride form a CNOCl square-plane and the P-atoms of the two PPh3 molecules occupy the two axial sites. The electronic spectra of the complexes in dichloromethane solutions display several absorptions due to ligand-to-metal charge transfer and ligand centred transitions. In dichloromethane solutions, the complexes display a ruthenium(III) → ruthenium(IV) oxidation in the potential range 0.35-0.98 V (vs. Ag/AgCl). All the complexes in frozen (110 K) dichloromethane-toluene (1:1) solutions display rhombic EPR spectra.  相似文献   

4.
Treatment of [RuCl3(PPh3)3] with 1-(arylazo)naphthol ligands in benzene under reflux afford air-stable new organoruthenium(III) complexes with general composition [Ru(an-R)Cl(PPh3)2] (where, R = H, Cl, CH3, OCH3, OC2H5) in fairly good yield. The 1-(arylazo)naphtholate ligands behave as dianionic tridentate C, N, O donors and coordinates to ruthenium through phenolic oxygen, azo nitrogen and ortho carbon generate two five-membered chelate rings. The composition of the complexes have been established by analytical (elemental analysis and magnetic susceptibility measurement) and spectral (FT-IR, UV-Vis, EPR) methods. The complexes are paramagnetic (low-spin, d5) in nature and in dichloromethane solution show intense d-d transitions and ligand-to-metal charge transfer (LMCT) transitions in the visible region. The solution EPR spectrum of complex [Ru(an-CH3)Cl(PPh3)2] (3) in dichloromethane at 77 K shows rhombic distortion around the ruthenium ion with three different ‘g’ values (gx ≠ gy ≠ gz). The single crystal structure of the complex [Ru(an-OCH3)Cl(PPh3)2] (4) has been characterised by X-ray crystallography, indicates the presence of a distorted octahedral geometry in these complexes. All the complexes exhibit one quasi-reversible oxidative response in the range 0.60-0.79 V (RuIV/RuIII) and two quasi-reversible reductive responses (RuIII/RuII; RuII/RuI) within the range −0.50 to −0.62 V and −0.93 to −0.98 V respectively. The formal potential of all the couples correlate linearly with the Hammett constant of the para substituent in arylazo fragment of the 1-(arylazo)naphtholate ligand. Further, the catalytic efficiency of one of the ruthenium complexes (4) was determined for the transfer hydrogenation of ketones with an excellent yield up to 99% in the presence of isopropanol/KOH.  相似文献   

5.
The reactions of [Ru(H)(Cl)(CO)(PPh3)3] with 3,5-di-tert-butyl-o-benzoquinone (dbq) and 3,4,5,6-tetrachloro-o-benzoquinone (tcq) have afforded the corresponding semiquinone complexes [RuII(dbsq)(Cl)(CO)(PPh3)2] and [RuII(tcsq)(Cl)(CO)(PPh3)2], respectively. The reaction of [Ru(H)2(CO)(PPh3)3] with tcq has furnished [RuII(tcsq)(H)(CO)(PPh3)2]. Structure determination of [Ru(dbsq)(Cl)(CO)(PPh3)2] has revealed that it is a model semiquinonoid chelate with two equal C---O lengths ( 1.291(6) and 1.296(6) Å). The complexes are one-electron paramagnetic (1.85μB) and their EPR spectra in fluid media display a triplet structure (g2.00) due to superhyperfine coupling with two trans-31P atoms (Aiso17 G). The stretching frequency of the CO ligand increases by 20 cm−1 in going from [Ru(dbsq)(Cl)(CO)(PPh3)2] to [Ru(tcsq)(Cl)(CO)(PPh3)2] consistent with electron withdrawal by chloro substituents. For the same reason the E1/2 values of the cyclic voltammetric quinone/semiquinone and semiquinone/catechol couples undergo a shift of 500 mV to higher potentials between [Ru(dbsq)(Cl)(CO)(PPh3)2] and [Ru(tcsq)(Cl)(CO)(PPh3)2].  相似文献   

6.
Reaction of N-(2′-hydroxyphenyl)benzaldimines (abbreviated in general as H2L-R, where R stands for the para-substituent in the benzaldehyde fragment and H stands for the dissociable hydrogen atoms) with [Ru(PPh3)2(CO)2Cl2] affords a family of organoruthenium complexes of the type [Ru(PPh3)2(CO)(L-R)] where the N-(2′-hydroxyphenyl)benzaldimine ligand is coordinated to the metal center as tridentate C,N,O-donor. Structure of a representative complex has been determined by X-ray crystallography. All the [Ru(PPh3)2(CO)(L-R)] complexes are diamagnetic, and show characteristic 1H NMR signals and moderately intense MLCT transitions in the visible region. Cyclic voltammetry of the [Ru(PPh3)2(CO)(L-R)] complexes shows a reversible Ru(II)–Ru(III) oxidation within 0.38–0.68 V versus SCE, followed by an irreversible oxidation of the coordinated benzaldimine ligand within 1.09–1.27 V versus SCE. An irreversible reduction of the coordinated benzaldimine ligand is also observed near −1.1 V versus SCE. Potential of the Ru(II)–Ru(III) oxidation is observed to be sensitive to the nature of para-substituent R.  相似文献   

7.
New hexa-coordinated Ru(III) complexes of the type [Ru(H2Pzdc)(EPh3)3X2] have been synthesized by reacting 3,5-pyrazole dicarboxylic acid (H3Pzdc) with the appropriate starting complexes [RuX3(EPh3)3] (where X = Cl or Br; E = P or As). The ligand behaves as a bidentate monobasic chelate. All the complexes have been characterized by analytical and spectroscopic (IR, electronic and EPR) data. Single-crystal X-ray analysis of the complex [Ru(H2Pzdc)(PPh3)2Cl2]·C6H6·C2H5OH revealed that the coordination environment around the ruthenium center consists of an NOP2Cl2 octahedron. The planar ligand occupies the equatorial position along with two chlorine atoms, while the triphenylphosphine groups occupy the axial positions. The electrochemical behavior of the new complexes was studied using cyclic voltammetry. The new mononuclear ruthenium complexes are capable of acting as catalysts for the oxidation of alcohols.  相似文献   

8.
The reaction of [RuHCl(CO)(B)(EPh3)2] (where E = As, B = AsPh3; E = P, B = PPh3, py, pip, or mor) and dehydroacetic acid thiosemicarbazone (abbreviated as H2dhatsc where H2 stands for the two dissociable protons) in benzene under reflux afford a series of new ruthenium(II) carbonyl complexes containing dehydroacetic acid thiosemicarbazone of general formula [Ru(dhatsc)(CO)(B)(EPh3)] (where E = As, B = AsPh3; E = P, B = PPh3, py, pip or mor; dhatsc = dibasic tridentate dehydroacetic acid thiosemicarbazone). All the complexes have been characterized by elemental analyses, FT-IR, UV-Vis, and 1H NMR spectral methods. The thiosemicarbazone of dehydroacetic acid behaves as dianionic tridentate O, N, S donor and coordinates to ruthenium via phenolic oxygen of dehydroacetic acid, the imine nitrogen of thiosemicarbazone and thiol sulfur. In chloroform solution, all the complexes exhibit metal-to-ligand charge transfer transitions (MLCT). The crystal structure of one of the complexes [Ru(dhatsc)(CO)(PPh3)2] (1) has been determined by single crystal X-ray diffraction which reveals the presence of a distorted octahedral geometry in the complexes. All the complexes exhibit an irreversible oxidation (RuIII/RuII) in the range 0.76-0.89 V and an irreversible reduction (RuII/RuI) in the range −0.87 to −0.97 V. Further, the free ligand and its ruthenium complexes have been screened for their antibacterial and antifungal activities. The complexes show better activity in inhibiting the growth of bacteria Staphylococcus aureus and Escherichia coli and fungus Candida albicans and Aspergillus niger. These results made it desirable to delineate a comparison between free ligand and its ruthenium complexes.  相似文献   

9.
Reaction of 2-(phenylazo)pyridine (pap) with [Ru(PPh3)3X2] (X = Cl, Br) in dichloromethane solution affords [Ru(PPh3)2(pap)X2]. These diamagnetic complexes exhibit a weakdd transition and two intense MLCT transitions in the visible region. In dichloromethane solution they display a one-electron reduction of pap near − 0.90 V vs SCE and a reversible ruthenium(II)-ruthenium(III) oxidation near 0.70 V vs SCE. The [RuIII(PPh3)2(pap)Cl2]+ complex cation, generated by coulometric oxidation of [Ru(PPh3)2(pap)Cl2], shows two intense LMCT transitions in the visible region. It oxidizes N,N-dimethylaniline and [RuII(bpy)2Cl2] (bpy = 2,2′-bipyridine) to produce N,N,N′,N′-tetramethylbenzidine and [RuIII(bpy)2Cl2]+ respectively. Reaction of [Ru(PPh3)2(pap)X2] with Ag+ in ethanol produces [Ru(PPh3)2(pap)(EtOH)2]2+ which upon further reaction with L (L = pap, bpy, acetylacetonate ion(acac) and oxalate ion (ox2−)) gives complexes of type [Ru(PPh3)2(pap)(L)]n+ (n = 0, 1, 2). All these diamagnetic complexes show a weakdd transition and several intense MLCT transitions in the visible region. The ruthenium(II)-ruthenium(III) oxidation potential decreases in the order (of L): pap > bpy > acac > ox2−. Reductions of the coordinated pap and bpy are also observed.  相似文献   

10.
The reactions of [(ind)Ru(PPh3)2CN] (ind = η5-C9H7) (1) and [CpRu(PPh3)2CN] (Cp = η5-C5H5) (2) with [(η6-p-cymene)Ru(bipy)Cl]Cl (bipy = 2,2′-bipyridine) (3) in the presence of AgNO3/NH4BF4 in methanol, respectively, yielded dicationic cyano-bridged complexes of the type [(ind)(PPh3)2Ru(μ-CN)Ru(bipy)(η6-p-cymene)](BF4)2 (4) and [Cp(PPh3)2Ru(μ-CN)Ru(bipy)(η6-p-cymene)](BF4)2 (5). The reaction of [CpRu(PPh3)2CN] (2), [CpOs(PPh3)2CN] (6) and [CpRu(dppe)CN] (7) with the corresponding halide complexes and [(η6-p-cymene)RuCl2]2 formed the monocationic cyano-bridge complexes [Cp(PPh3)2Ru(μ-CN)Os(PPh3)2Cp](BF4) (8), [Cp(PPh3)2Os(μ- CN)Ru(PPh3)2Cp](BF4) (9) and [Cp(dppe)Ru(μ-CN)Os(PPh3)2Cp](BF4) (10) along with the neutral complexes [Cp(PPh3)2Ru(μ-CN)Ru (η6-p-cymene)Cl2] (11), [Cp(PPh3)2Os(μ-CN)Ru(η6-p-cymene)Cl2] (12), and [Cp(dppe) Ru(μ-CN)Ru(η6-p-cymene)Cl2] (13). These complexes were characterized by FT IR, 1H NMR, 31P{1H} NMR spectroscopy and the molecular structures of complexes 4, 8 and 11 were solved by X-ray diffraction studies.  相似文献   

11.
Reactions of the ruthenium complexes [Ru(κ3-tpy)(PPh3)Cl2], [Ru(κ3-tptz)(PPh3)Cl2] and [Ru(κ3-tpy)Cl3] [tpy = 2,2′:6′,2′′-terpyridine; tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine] with diphenyl-(2-pyridyl)-phosphine (PPh2Py) have been investigated. The complexes [Ru(κ3-tpy)(PPh3)Cl2] and [Ru(κ3-tptz)(PPh3)Cl2] reacted with PPh2Py to afford [Ru(κ3-tpy)(κ1-P-PPh2Py)2Cl]+ (1) and [Ru(κ3-tptz)(κ1-P-PPh2Py)2Cl]+ (2), which were isolated as their tetrafluoroborate salts. Under analogous conditions, [Ru(κ3-tpy)Cl3] gave a neutral complex [Ru(κ3-tpy)(κ1-PPh2Py)Cl2] (3). Upon treatment with an excess of NH4PF6 in methanol, 1 and 2 gave [Ru(κ3-tpy)(κ1-P-PPh2Py)(κ2-P,N-PPh2Py)](PF6)2 (4) and [Ru(κ3-tptz)(κ1-P-PPh2Py)(κ2-P,N-PPh2Py)](PF6)2 (5) containing both monodentate and chelated PPh2Py. Further, 4 and 5 reacted with an excess of NaCN and CH3CN to afford [Ru(κ3-tpy)(κ1-P-PPh2Py)2(CN)](PF6) (6), [Ru(κ3-tpy)(κ1-P-PPh2Py)2(NCCH3)](PF6)2 (7), [Ru(κ3-tptz)(κ1-P-PPh2Py)2(CN)]PF6 (8) and [Ru(κ3-tptz)(κ1-P-PPh2Py)2(NCCH3)](PF6)2 (9) supporting hemi labile nature of the coordinated PPh2Py. The complexes have been characterized by elemental analyses, spectral (IR, NMR, electronic absorption, FAB-MS), electrochemical studies and structures of 1, 2 and 3 determined by X-ray single crystal analyses. At higher concentration level (40 μM) the complexes under investigation exhibit inhibitory activity against DNA-Topo II of the filarial parasite S. cervi and 3 catalyses rearrangement of aldoximes to amide under aerobic conditions.  相似文献   

12.
The kinetics of the formation of the active species cis-[PtII(PPh3)2Cl(SnCl3)] and cis-[PtII(PPh3)2(SnCl3)2] from the hydroformylation catalyst precursor cis-[PtII(PPh3)2Cl2] in the presence of SnCl2, was studied in two different imidazolium-based ionic liquids. A large range of different chlorostannate melts consisting of 1-butyl-3-methyl-imidazolium cations and [SnxCly](−y + 2x) anions with varying molar fraction of SnCl2, were prepared and characterized by 1H and 119Sn NMR. The observed chemical shifts point to major changes in the composition of the anionic species within the melt. The second ionic liquid employed, viz., 1-butyl-3-methyl-imidazolium-bis(trifluormethylsulfonyl)amide was prepared in a colorless quality that enabled its application in kinetic studies. The concentration and temperature dependence of the substitution of Cl by [SnCl3] to yield cis-[PtII(PPh3)2Cl(SnCl3)], could be studied in detail. Theoretical (DFT) calculations were employed to model the reaction progress and to resolve the role of the ionic liquid in the activation of the catalyst. The available results are presented and a plausible mechanism for the formation of the catalytically active species is suggested.  相似文献   

13.
Treatment of either RuHCl(CO)(PPh3)3 or MPhCl(CO)(PPh3)2 with HSiMeCl2 produces the five-coordinate dichloro(methyl)silyl complexes, M(SiMeCl2)Cl(CO)(PPh3)2 (1a, M = Ru; 1b, M = Os). 1a and 1b react readily with hydroxide ions and with ethanol to give M(SiMe[OH]2)Cl(CO)(PPh3)2 (2a, M = Ru; 2b, M = Os) and M(SiMe[OEt]2)Cl(CO)(PPh3)2 (3a, M = Ru; 3b, M = Os), respectively. 3b adds CO to form the six-coordinate complex, Os(SiMe[OEt]2)Cl(CO)2(PPh3)2 (4b) and crystal structure determinations of 3b and 4b reveal very different Os-Si distances in the five-coordinate complex (2.3196(11) Å) and in the six-coordinate complex (2.4901(8) Å). Reaction between 1a and 1b and 8-aminoquinoline results in displacement of a triphenylphosphine ligand and formation of the six-coordinate chelate complexes M(SiMeCl2)Cl(CO)(PPh3)(κ2(N,N)-NC9H6NH2-8) (5a, M = Ru; 5b, M = Os), respectively. Crystal structure determination of 5a reveals that the amino function of the chelating 8-aminoquinoline ligand is located adjacent to the reactive Si-Cl bonds of the dichloro(methyl)silyl ligand but no reaction between these functions is observed. However, 5a and 5b react readily with ethanol to give ultimately M(SiMe[OEt]2)Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6a, M = Ru; 6b, M = Os). In the case of ruthenium only, the intermediate ethanolysis product Ru(SiMeCl[OEt])Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6c) was also isolated. The crystal structure of 6c was determined. Reaction between 1b and excess 2-aminopyridine results in condensation between the Si-Cl bonds and the N-H bonds with formation of a novel tridentate “NSiN” ligand in the complex Os(κ3(Si,N,N)-SiMe[NH(2-C5H4N)]2)Cl(CO)(PPh3) (7b). Crystal structure determination of 7b shows that the “NSiN” ligand coordinates to osmium with a “facial” arrangement and with chloride trans to the silyl ligand.  相似文献   

14.
Diamagnetic ruthenium(II) complexes of the type [Ru(L)(CO)(B)(EPh3)] [where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip and L = dibasic tridentate ligands dehydroacetic acid semicarbazone (abbreviated as dhasc) or dehydroacetic acid phenyl thiosemicarbazone (abbreviated as dhaptsc)] were synthesized from the reaction of [RuHCl(CO)(B)(EPh3)2] (where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip) with different tridentate chelating ligands derived from dehydroacetic acid with semicarbazide or phenylthiosemicarbazide. All the complexes have been characterized by elemental analysis, FT-IR, UV–Vis and 1H NMR spectral methods. The coordination mode of the ligands and the geometry of the complexes were confirmed by single crystal X-ray crystallography of one of the complexes [Ru(dhaptsc)(CO)(PPh3)2] (5). All the complexes are redox active and are monitored by cyclic voltammetric technique. Further, the catalytic efficiency of one of the ruthenium complexes (5) was determined in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide.  相似文献   

15.
The reaction of CuX (X = Cl, Br, I) with a mixture of PPh3 and 1-alkyl-2-(naphthyl-α/β-azo)imidazole has synthesized mixed ligand complexes of the composition, [Cu(α/β-NaiR)(PPh3)X]. The spectroscopic characterization (IR, UV–Vis, 1H NMR) supports this formulation. The single crystal X-ray diffraction study of [Cu((α-NaiMe)(PPh3)I] (7a) (α-NaiMe = 1-methyl-2-(naphthyl-α-azo)imidazole) shows a distorted tetrahedral geometry about Cu(I). Cyclic voltammograms of the complexes show a high potential Cu(II)/Cu(I) couple and azo reductions. The [Cu(α/β-NaiR)(PPh3)I] complexes show an additional oxidative response at 0.4 V that is assigned to I/I A sharp anodic peak at ∼−0.2 V is assigned to the oxidation of metallic Cu, deposited on electrode surface upon scanning to the negative side of the SCE. DFT and TD-DFT computations of [Cu((α-NaiMe)(PPh3)I] (7a), [Cu((α-NaiMe)(PPh3)I]+ (7a+) and [Cu((α-NaiMe)(PPh3)I] (7a) were carried out to examine the electronic configuration and to explain the spectral and redox properties of the complexes.  相似文献   

16.
Twelve ruthenium(III) complexes bearing amine-bis(phenolate) tripodal ligands of general formula [Ru(L1–L3)(X)(EPh3)2] (where L1–L3 are dianionic tridentate chelator) have been synthesized by the reaction of ruthenium(III) precursors [RuX3(EPh3)3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr3(PPh3)2(CH3OH)] with the tripodal tridentate ligands H2L1, H2L2 and H2L3 in benzene in 1:1 molar ratio. The newly synthesized complexes have been characterized by analytical (elemental and magnetic susceptibility) and spectral methods. The complexes are one electron paramagnetic (low-spin, d5) in nature. The EPR spectra of the powdered samples at RT and the liquid samples at LNT shows the presence of three different ‘g’ values (gx ≠ gy ≠ gz) indicate a rhombic distortion around the ruthenium ion. The redox potentials indicate that all the complexes undergo one electron transfer process. The catalytic activity of one of the complexes [Ru(pcr-chx)Br(AsPh3)2] was examined in the transfer hydrogenation of ketones and was found to be efficient with conversion up to 99% in the presence of isopropanol/KOH.  相似文献   

17.
New polypyridyl osmium(II) complexes [Os(κ3-tptz)(EPh3)2Cl]BF4 (E = P, 1; As, 2) with group 15 donor ligands are reported. Structural studies on the representative complex [Os(κ3-tptz)(PPh3)2Cl]BF4 revealed formation of helical racemates with sidewise stacking of right and left-handed anti-parallel helical strands. Salient structural features and DNA binding studies along with binding constant [6.6 × 103 M−1] and site size [0.12] of the complex 1 with calf thymus (ct) DNA by absorption spectroscopy are described.  相似文献   

18.
《Polyhedron》1987,6(11):2009-2018
A new bidentate ligand {2-(diphenylphosphino)ethyl}benzylamine(DPEBA) was synthesized and characterized based on the IR, mass and 1H, 13C and 31P NMR spectra. Various complexes of platinum group metal ions and Ni(II) and Co(II) ions with the ligand were synthesized. Reaction of RuCl2(PPh3)3 or RuCl2(Me2SO)4 with the ligand DPEBA, resulted in formation of a penta-coordinate, Ru(II) species of the composition [RuCl(DPEBA)2]Cl. Carbonylation of [RuCl(DPEBA)2]Cl gave an octahedral carbonyl complex of the type [RuCl(CO)(DPEBA)2]Cl. The reaction of RuCl3·3H2O or RuCl3(AsPh3)2MeOH with a twofold excess of the ligand gave an octahedral Ru(III) cationic species [Ru(DPEBA)2Cl2]Cl. Carbonylation of the Ru(III) complex gave rise to a carbonyl complex [RuCl(CO)(DPEBA)2]Cl2. The ligand DPEBA reacts with cobalt(II) chloride in methanol to give the 1 : 1 complex [Co(DPEBA)Cl2]. A series of Rh(I) complexes [Rh(DPEBA)2Cl], [ RhCl(CO)(DPEBA)] and [Rh(DPEBA)2]Cl were synthesized by the reaction of DPEBA with RhCl(PPh3)3, RhCl(CO)(PPh3)2 and [Rh(COD)Cl]2, respectively. Reaction of [Ir(COD)Cl]2 and IrCl(CO)(PPh3)2 with the ligand DPEBA, gave the square-planar complexes [Ir(DPBA)2]Cl and [Ir(DPEBA)(CO)Cl], respectively. Octahedral cationic complexes of the type [M(DPEBA)2Cl2]Cl (M = Rh(III), Ir(III)) were synthesized by the reaction of the ligand DPEBA and rhodium and iridium trichlorides. Reaction of NiCl2·6H2O with DPEBA in 1 : 2 molar equivalents, in boiling butanol gave an octahedral neutral complex [Ni(DPEBA)2Cl2] which readily rearranges to the square-planar complex [Ni(DPEBA)2]Cl2 in methanol. Reaction of Pd(II) and Pt(II) chlorides with DPEBA gave square-planar, cationic complexes of the type [M(DPEBA)2Cl]Cl (M = Pd, Pt). All the complexes were characterized on the basis of their analytical and spectral data.  相似文献   

19.
Two stable thiazolylazo anion radical complexes of ruthenium(II), [Ru(L1•−)(Cl)(CO)(PPh3)2] (1) and [Ru(L2•−)(Cl)(CO)(PPh3)2] (2) (where L1 = 2′-Thiazolylazo-2-imidazole and L2 = 4-(2′-Thiazolylazo)-1-n-hexadecyloxy-naphthalene), have been synthesized and characterized by spectroscopic and electrochemical techniques. The radical nature of the complexes has been confirmed from their room temperature magnetic moments and X-band ESR spectra. The radical complexes display a moderately intense (ε ~ 104 M−1 cm−1) and relatively broad band in 430–460 nm region. In the microcrystalline state, complexes (1) and (2) display strong ESR signals at g = 1.951 and g = 1.988, respectively. In CH2Cl2 solution, complexes (1) and (2) show a quasireversible one-electron response near −0.64 and −0.59 V, respectively, versus Ag/AgCl due to the radical redox couple [RuII(L)(Cl)(CO)(PPh3)2]/[RuII (L•−)(Cl)(CO)(PPh3)2].  相似文献   

20.
Reactions of [Ru(PPh3)3Cl2] with ROCS2K in THF at room temperature and at reflux gave the kinetic products trans-[Ru(PPh3)2(S2COR)2] (R = nPr 1, iPr 2) and the thermodynamic products cis-[Ru(PPh3)2(S2COR)2] (R = nPr 3, iPr 4), respectively. Treatment of [RuHCl(CO)(PPh3)3] with ROCS2K in THF afforded [RuH(CO)-(S2COR)(PPh3)2] (R = nPr 5, iPr 6) as the sole isolable products. Reaction of [RuCl2(PPh3)3] with tetramethylthiuram disulfide [Me2NCS2]2 gave a Ru(III) dithiocarbamate complex, [Ru(PPh3)2(S2CNMe2)Cl2] (7). This reaction involved oxidation of ruthenium(II) to ruthenium(III) by the disulfide group in [Me2NCS2]2. Treatment of 7 with 1 equiv. of [M(MeCN)4][ClO4] (M = Cu, Ag) gave the stable cationic ruthenium(III)-alkyl complexes [Ru{C(NMe2)QC(NMe2)S}(S2CNMe2)(PPh3)2][ClO4] (Q = O 8, S 9) with ruthenium-carbon bonds. The crystal structures of complexes 1, 2, 4·CH2Cl2, 6, 7·2CH2Cl2, 8, and 9·2CH2Cl2 have been determined by single-crystal X-ray diffraction. The ruthenium atom in each of the above complexes adopts a pseudo-octahedral geometry in an electron-rich sulfur coordination environment. The 1,1′-dithiolate ligands bind to ruthenium with bite S-Ru-S angles in the range of 70.14(4)-71.62(4)°. In 4·CH2Cl2, the P-Ru-P angle for the mutually cis PPh3 ligands is 103.13(3)°, the P-Ru-P angles for other complexes with mutually trans PPh3 ligands are in the range of 169.41(4)-180.00(6)°. The alkylcarbamate [C(NMe2)QC(NMe2)S] (Q = O, S) ligands in 8 and 9 are planar and bind to the ruthenium centers via the sulfur and carbon atoms from the CS and NC double bonds, respectively. The Ru-C bond lengths are 1.975(5) and 2.018(3) Å for 8 and 9·2CH2Cl2, respectively, which are typical for ruthenium(III)-alkyl complexes. Spectroscopic properties along with electrochemistry of all complexes are also reported in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号