共查询到20条相似文献,搜索用时 15 毫秒
1.
Marcus L. Cole Aaron J. Davies Cameron Jones 《Journal of organometallic chemistry》2004,689(19):3093-3107
A study has been undertaken of the lithium and sodium metallation of N,N′-di(aryl)formamidines with alkyl groups at the 2- and 6-aryl position. 1H NMR and X-ray diffraction data indicate an increase in steric bulk from 2,6-dimethylphenyl to 2,6-diethylphenyl to 2,6-diisopropylphenyl incites incremental changes in amidinate binding and nuclearity. In selected instances, this invokes the first lithium and sodium amidinate/guanidinate complexes to exhibit metal-arene contacts. 相似文献
2.
Three novel Cu(II)-pyrazine-2,3-dicarboxylate complexes with 1,3-propanediamine (pen), [Cu2(μ-pzdc)2(pen)2] · 2H2O (1), N,N,N′,N′-tetramethylethylenediamine (tmen), {[Cu(μ-pzdc)(tmen)] · H2O}n(2), and 2,2′-bipyridine (bipy), {[Cu(μ-pzdc)(bipy)]·H2O}n(3) have been synthesized and characterized by means of elemental and thermal analyses, magnetic susceptibilities, IR and UV/vis spectroscopic studies. The molecular structures of dinuclear (1) and polynuclear (2 and 3) complexes have been determined by the single crystal X-ray diffraction technique. The pyrazine-2,3-dicarboxylate acts as a bridging ligand through oxygen atom of carboxylate group and N atom of pyrazine ring and one oxygen atom of neighboring carboxylate. It links the Cu(II) ions to generate a distorted square pyramidal geometry forming a one-dimensional (1D) chain. Adjacent chains of 1 and 2 are then mutually linked via hydrogen bonding interactions, which are further assembled to form a two and three-dimensional network, respectively. The chains of complex 3 are further constructed to form three-dimensional framework by hydrogen bonding, C–H?π and ring?ring stacking interactions. In the complexes, Cu(II) ions have distorted square pyramidal geometry. Thermal analyses properties and thermal decomposition mechanism of complexes have been investigated by using thermal analyses techniques (TG, DTG and DTA). 相似文献
3.
M.C. Torralba J.A. Campo E. Pinilla M.R. Torres 《Journal of organometallic chemistry》2006,691(4):765-778
Two types of Pd-complexes containing the new N,N′-ligands 2-[3-(4-alkyloxyphenyl)pyrazol-1-yl]pyridine (pzRpy; R = C6H4OCnH2n+1, n = 6 (hp), 10 (dp), 12 (ddp), 14 (tdp), 16 (hdp), 18 (odp)) (1-6), namely c-[Pd(Cl)2(pzRpy)] (7-10) and c-[Pd(η3-C3H5)(pzRpy)]BF4 (11-16), have been synthesised and characterised by different spectroscopic techniques. Those members of the second type containing the largest chains (R = ddp 13, tdp 14, hdp 15, odp 16) have been found to have liquid crystal properties showing smectic A mesophases. By contrast, neither the free ligands pzRpy nor their related c-[Pd(Cl)2(pzRpy)] complexes exhibited mesomorphism. The new synthesised metallomesogens are mononuclear complexes with an unsymmetrical molecular shape as deduced from the X-ray structures of c-[Pd(η3-C3H5)(pzRpy)]BF4 (R = hp, 11; dp, 12). Both compounds, which are isostructural, show a distorted square-planar environment on the palladium centres defined by the allyl and the bidentate pzRpy ligands. The crystal structure reveals that both the counteranion and the pzRpy ligand function as a source of hydrogen-bonding and intermolecular π?π contacts resulting in a 2D supramolecular assembly. 相似文献
4.
Xiao-Qing Shen Hong-Chang Yao Rui Yang Zhong-Jun Li Hong-Yun Zhang Ben-Lai Wu Hong-Wei Hou 《Polyhedron》2008
Based on N,N′-bis(5-ethyl-1,3,4-thiadiazol-2-yl)-2,6-pyridinedicarboxamide (H2L) and inorganic ZnII and CdII salts, three polynuclear complexes [Zn6(μ4-O)2(L)4] (1), [Zn3(μ3-O)2(L)2(H2L)] (2) and [Cd5(μ3-O)2(L)3(H2L)(CH3OH)(DMF)] (3) have been prepared and their crystal structures have been determined by single-crystal X-ray analysis. The thermal behaviors of these complexes in nitrogen and the thermal decomposition kinetics of complex 2 in the temperature range 350–540 °C have been studied, and kinetic parameters were also obtained. Kinetic results show that the decomposition of complex 2 is double-step reaction: a 1st-order reaction (F1) is followed by an nth-order reaction (Fn). 相似文献
5.
Ling-Yan Kong Taka-aki Okamura Norikazu Ueyama 《Journal of solid state chemistry》2004,177(7):2271-2280
Five novel coordination polymers, [Co(bpb)2Cl2] (1), [Co(bpb)2(SCN)2] (2), [Cd(H4bpb)0.5(dmf)(NO3)2] (3), [Cd2(H4bpb)Br4] (4), and [Hg2(H4bpb)I4] (5) [bpb=N,N′-bis(3-pyridylmethyl)-1,4-benzenedimethyleneimine, H4bpb=N,N′-bis(3-pyridylmethyl)-1,4-benzenedimethylamine], were synthesized and their structures were determined by X-ray crystallography. In the solid state, complex 1 is a 1D hinged chain, while 2 has 2D network structure with the ligand bpb serving as a bridging ligand using its two pyridyl N atoms. The imine N atoms keep free of coordination and bpb acts as a bidentate ligand in both 1 and 2. Complexes 3, 4, and 5 with reduced bpb ligand, i.e. H4bpb, show similar 2D network structure, in which ligand H4bpb serves as a tetradentate ligand. Thermogravimetric analyses for complexes 1-5 were carried out and found that they have high thermal stability. The magnetic susceptibilities of compounds 1, 2 were measured over a temperature range of 75-300 K. 相似文献
6.
A series of nickel(II) complexes having the (Me-Tp)2PMA ligand ((Me-Tp)2PMA = bis(5-methyl-2-thiophenemethyl)(2-pyridylmethyl)amine) with nitrates (1), chlorides (2), and perchlorates (3) as anions were synthesized and isolated. All these complexes were successfully characterized by physicochemical methods including X-ray crystallographic analysis. In complex 1, the ligand binds in a bidentate N2 fashion, whereas in the cases of 2 and 3 the ligand binds in the tridentate N2S form. The coordination geometry around the nickel(II) atoms in these complexes is distorted octahedral. 相似文献
7.
Reaction of five N,N′-bis(aryl)pyridine-2,6-dicarboxamides (H2L-R, where H2 denotes the two acidic protons and R (R = OCH3, CH3, H, Cl and NO2) the para substituent in the aryl fragment) with [Ru(trpy)Cl3](trpy = 2,2′,2″-terpyridine) in refluxing ethanol in the presence of a base (NEt3) affords a group of complexes of the type [RuII(trpy)(L-R)], each of which contains an amide ligand coordinated to the metal center as a dianionic tridentate N,N,N-donor along with a terpyridine ligand. Structure of the [RuII(trpy)(L-Cl)] complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on the [RuII(trpy)(L-R)] complexes shows a Ru(II)–Ru(III) oxidation within 0.16–0.33 V versus SCE. An oxidation of the coordinated amide ligand is also observed within 0.94–1.33 V versus SCE and a reduction of coordinated terpyridine ligand within −1.10 to −1.15 V versus SCE. Constant potential coulometric oxidation of the [RuII(trpy)(L-R)] complexes produces the corresponding [RuIII(trpy)(L-R)]+ complexes, which have been isolated as the perchlorate salts. Structure of the [RuIII(trpy)(L-CH3)]ClO4 complex has been determined by X-ray crystallography. All the Ru(III) complexes are one-electron paramagnetic, and show anisotropic ESR spectra at 77 K and intense LMCT transitions in the visible region. A weak ligand-field band has also been shown by all the [RuIII(trpy)(L-R)]ClO4 complexes near 1600 nm. 相似文献
8.
9.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 1–3 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 1–4 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions. 相似文献
10.
《Journal of Coordination Chemistry》2012,65(15):2489-2498
AbstractFive new coordination complexes [MnII (L1)2(4,4′-bpy)]n (1), [NiII (L1)2(4,4′-bpy)]n (2), [ZnII (L1)2(4,4′-bpy)]n (3), [CuII (L1)2(phen)2]Cl2 (4) and [CuII 2(L1)2(2,2′-bpy)2]Cl2 (5) (HL1?=?3,4,5-trifluorobenzeneseleninic acid, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine and phen = 1,10-phenanthroline), have been synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), elemental analysis and IR spectroscopy. Complexes 1–3 display similar layers structures. In 1–3, the adjacent layers are further connected through π···π interactions to form three-dimensional supramolecular structures. Complexes 4 and 5 show a dimer containing an eight-membered ring. The dimer extends into three-dimensional supramolecular structures through π···π interactions, C–H···F and C–H···Cl interactions. 相似文献
11.
12.
Reaction of Ln(NO3)3·6H2O with H2L [H2L=N,N′-bis(salicylidene)propane-1,2-diamine] gives rise to five new coordination polymers, viz. [Pr(H2L)(NO3)3(MeOH)]n (1) and [Ln(H2L)1.5(NO3)3]n [Ln=La (2), Eu (3), Sm (4) and Gd (5)]. Crystal structural analysis reveals that H2L effectively functions as a bridging ligand forming one-dimensional (1D) chain and two-dimensional (2D) open-framework polymers. Solid-state fluorescence spectra of 3 and 4 exhibit typical red fluorescence of Eu(III) and Sm(III) ions at room temperature while 2 emits blue fluorescence of ligand H2L. The lowest triplet level of ligand H2L was calculated on the basis of the phosphorescence spectrum of 5. The energy transfer mechanisms in the lanthanide polymers were described and discussed. 相似文献
13.
The syntheses and crystal structures of four new uranyl complexes with [O,N,O,N′]-type ligands are described. The reaction between uranyl nitrate hexahydrate and the phenolic ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-N′,N′-dimethylethylenediamine)], H2L1 in a 1:2 molar ratio (M to L), yields a uranyl complex with the formula [UO2(HL1)(NO3)] · CH3CN (1). In the presence of a base (triethylamine, one mole per ligand mole) with the same molar ratio, the uranyl complex [UO2(HL1)2] (2) is formed. The reaction between uranyl nitrate hexahydrate and the ligand [(N,N-bis(2-hydroxy-3,5-di-t-butylbenzyl)-N′,N′-dimethylethylenediamine)], H2L2, yields a uranyl complex with the formula [UO2(HL2)(NO3)] · 2CH3CN (3) and the ligand [N-(2-pyridylmethyl)-N,N-bis(2-hydroxy-3,5-dimethylbenzyl)amine], H2L3, in the presence of a base yields a uranyl complex with the formula [UO2(HL3)2] · 2CH3CN (4). The molecular structures of 1–4 were verified by X-ray crystallography. The complexes 1–4 are zwitter ions with a neutral net charge. Compounds 1 and 3 are rare neutral mononuclear [UO2(HLn)(NO3)] complexes with the nitrate bonded in η2-fashion to the uranyl ion. Furthermore, the ability of the ligands H2L1–H2L4 to extract the uranyl ion from water to dichloromethane, and the selectivity of extraction with ligands H2L1, H3L5 (N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-3-amino-1-propanol), H2L6 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminobutane · HCl) and H3L7 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol · HCl) under varied chemical conditions were studied. As a result, the most efficient and selective ligand for uranyl ion extraction proved to be H3L7 · HCl. 相似文献
14.
15.
José M. Benito F. Javier de la Mata Rafael Gómez 《Journal of organometallic chemistry》2008,693(2):278-282
Pyridylimine ligands of general formula CS-{O-4-(2,5-C6H2R2)-NCH-2-Py}n, where CS is a trimethylsilyl group (n = 1, R = H, Ia or Me, Ib) or a carbosilane dendritic framework (IIa,b, n = 4; IIIa, n = 8), have been coordinated to platinum(II) and molybdenum(0) centers to give the mononuclear [(Ia,b){PtCl2}], tetranuclear [(IIb){PtCl2}4] and [(IIa){Mo(CO)3(MeCN)}4], and octanuclear [(IIIa){Mo(CO)3(MeCN)}8] complexes. The poor solubility of the polymetallic platinum compounds impedes the preparation of higher-generation dendrimers, although such a limitation is not found in the case of the more soluble molybdenum dendrimers. 相似文献
16.
Treatment of (2-C5H4N)CH2 3N (TPA) with one equivalent of MCl2 in n-BuOH at elevated temperatures affords the six-coordinate complexes [(TPA)MCl2] (M = Co (1), Fe (2)) and, in the case of CoCl2, the five-coordinate chloride salt [(TPA)CoCl]Cl (3). Conversely, addition of an excess of CoCl2 in the latter reaction leads to [(TPA)CoCl]2[CoCl4] (4) as the only isolable product. Interaction of one equivalent of (2-C5H4N)CH2 2NH (DPA) and MCl2 under similar reaction conditions to that described above affords the dimeric species [(fac-DPA)MCl(μ-Cl)]2 (M = Co (5), Fe (6)), while the bis(ligand) halide salts [(fac-DPA)2M]Cl2 (M = Co (7), Fe (8)) are accessible on addition of two equivalents of DPA. In the presence of air, 6 undergoes oxidation to give [ (fac-DPA)FeCl2 2(μ-O)] (9). Single-crystal X-ray diffraction studies are reported for 1, 2 · MeCN, 3, , 7 · 3MeCN, 8 · 3MeCN and 9. 相似文献
17.
The reaction of Re(CO)5Cl with the chelating ligand N,N′-bis(benzophenone)-1,2-diiminoethane (bz2en) afforded the neutral fac-[Re(CO)3(bz2en)Cl]. The subsequent reaction with AgOCOCF3 gave fac-[Re(CO)3(bz2en)OCOCF3]. Their pseudooctahedral fac structures have been established by FTIR, UV–Vis, 1H, 13C NMR and have been confirmed by X-ray diffraction analysis. The electrochemical behaviour of the investigated complexes has been studied by cyclic voltammetry. 相似文献
18.
Mitsunori Oda Nguyen Chung Thanh Hisayoshi Fujikawa Shigeyasu Kuroda 《Tetrahedron》2007,63(43):10608-10614
Two title compounds, N,N,N′,N′-tetraphenyl-1,3-bis(5-aminothien-2-yl)azulene (3a) and 1,3-bis{5-(9-carbazolyl)thien-2-yl}azulene (3b), were synthesized from 1,3-di(2-thienyl)azulene (4) by a two-step sequence involving bromination and subsequent Pd-catalyzed amination. These compounds were characterized by spectroscopic analyses and the structure of 3a was determined by X-ray crystallographic analysis. Their HOMO energy levels were estimated using their electrochemical oxidation potentials, and these compounds were used as a hole-injecting material in organic light-emitting devices. The device with 3a showed greater durability than that with copper phthalocyanine. 相似文献
19.
Alexander Betz Markus Reiher Annie-Claude Gaumont Mihaela Gulea 《Journal of organometallic chemistry》2008,693(15):2499-2508
New thiazoline-containing ligands including non-symmetric bis(thiazolines) and oxazoline-thiazolines were synthesized and then compared to C2-symmetric bis(thiazolines) in the palladium-catalyzed allylic substitution. The experimental results obtained in this study support the hypothesis of a competition between the (N,N) and the (N,S) palladium chelation, when sterically hindered bis(thiazolines) are used as ligands. A quantum chemical study performed on the Pd-complexes derived from three selected ligands, two C2-symmetric bis(thiazolines) and one oxazoline-thiazoline, also supports this hypothesis. 相似文献
20.
Ta-Pin Tsai Yen-Tsang Huang Umasankar Ray Yin-Jui Chang Pei-Chi Cheng Chia-Jun Wu Jhy-Der Chen Ju-Chun Wang 《Polyhedron》2010
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF}∞ (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF}∞ (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}∞, 4, and {[Na(L3)2][Hg2X5]·2DMF}∞ (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5]− anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 3–6 adopt the trans conformation. 相似文献