首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The dependence of the structure of complexes of sterically crowded 2,4-dimethylpentane-2,4-diol with group 13 metals trialkyls on the kind of metal, as well as steric bulk of the substituents on the metal atoms is reported. The reaction of tBu3Ga with 2,4-dimethylpentane-2,4-diol leads to the formation of an unstable dimeric product {tBu2Ga[(OC(CH3)2CH2C(CH3)2OH]}2 (1) possessing a four-membered Ga2O2 core and two unreacted hydroxyl groups. Compound 1 undergoes further intramolecular reaction to yield the unusual (monoalkyl)gallane O,O-chelate complex {tBuGa[OC(CH3)2CH2C(CH3)2O]}2 (2). In contrast to tBu3Ga, tBu3In reacts with 2,4-dimethylpentane-2,4-diol to give the stable dimeric complex tBu4In2[OC(CH3)2CH2C(CH3)2OH]2 (4) stabilised by two intramolecular O-H?O bonds. At higher temperature compound 4 reacts with an excess of tBu3In to form the trinuclear complex tBu5In3[OC(CH3)2CH2C(CH3)2O]2 (5). The reactions of 2,4-dimethylpentane-2,4-diol with trialkylmetallane with small alkyl groups, i.e. Me3Ga and Me3In allow for the isolation of the trinuclear diolates {Me5M3[OC(CH3)2CH2C(CH3)2O]2} [M=Ga (3), M=In (6)]. The crystal structures of 2, 3 and 4 have been determined by single crystal X-ray diffraction. The reactions of tert-butylmetallane diolates with trimethyl metallanes have been studied. The interaction of the allane complex {tBuAl[OC(CH3)2CH2C(CH3)2O]}2 with Me3Al results in the formation of the trialuminium mixed-ligand product {Me3(tBu)2Al3[OC(CH3)2CH2C(CH3)2O]2} (7). Compounds 2 and 4 undergo a total transmetallation reaction in the presence of Me3M to yield [Me5M3(diol-(2H))2] [M=Al, Ga] products.  相似文献   

2.
The compounds, 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (MeNˆNˆN) (L1) and 2,6-bis(3,5-ditertbutylpyrazol-1-ylmethyl)pyridine (tBuNˆNˆN) (L2), react with either [Pd(NCMe)2Cl2] or [Pd(COD)ClMe] to form the mononuclear palladium complexes [Pd(MeNˆNˆN)Cl2] (1), [Pd(MeNˆNˆN)ClMe] (2), [Pd(tBuNˆNˆN)Cl2] (3) and [Pd(tBuNˆNˆN)ClMe] (4). Reactions of 1, 2 and 4 with the halide abstractor, NaBAr4 (Ar = 3,5-(CF3)2C6H3), led to the formation of stable tridentate cationic species [Pd(MeNˆNˆN)Cl]+(5), [Pd(MeNˆNˆN)Me]+ (6) and [Pd(tBuNˆNˆN)Cl]+ (7) respectively. The analogous carbonyl linker cationic species [Pd{(3,5-Me2pz-CO)2-py}Cl]+ (9) and [Pd{(3,5-tBu2pz-CO)2-py}Cl]+ (10), prepared by halide abstraction of the neutral complexes [Pd{(3,5-Me2pz-CO)2-py}Cl2] and [Pd{(3,5-tBu2pz-CO)2-py}Cl2] by NaBAr4, were however less stable with t1/2 of 14 and 2 days respectively. Attempts to crystallize 1 and 3 from the mother liquor resulted in the isolation of the salts [Pd(MeNˆNˆN)Cl]2[Pd2Cl6] (11) and [Pd(tBuNˆNˆN)Cl]2[Pd2Cl6] (12). Although when complexes 14 were reacted with modified methylaluminoxane (MMAO) or NaBAr4, no active catalysts for ethylene oligomerization or polymerization were formed, activation with silver triflate (AgOTf) produced active catalysts that oligomerized and polymerized phenylacetylene to a mixture of cis-transoidal and trans-cisoidal polyphenylacetylene.  相似文献   

3.
Amination of 1-bromo-2-methylpyridine with trans-1,2-diaminocyclohexane gives the corresponding bis(aminopyridine) H2L1. Conversion of the same diamine to the N,N′-bis(amino-4,4-dimethylthiazoline) H2L2 is also completed in three steps. The analogous aminooxazoline is however inaccessible, although the aminocyclohexane analogue is prepared readily. The proligand H2L1 forms bis(aminopyridinato) alkyl complexes of the type [ZrL1R2] (R = CH2Ph, CH2But). The molecular structure of the neopentyl complex shows that the chiral backbone leads to a puckering of the N4Zr coordination sphere, which contrasts with the related cyclohexyl-bridged Schiff-base complexes which are essentially planar. [ZrL2(CH2But)2] - the first aminothiazolinato complex - is formed similarly. A comparison of the structures of [ZrL1(CH2But)2] and [ZrL2(CH2But)2] indicates that the latter has a fully delocalised N-C-N system, rather similar to a bis(amidinate). Reaction of H2L2 with [Ti(NMe2)4] gives [TiL2(NMe2)2] which appears to be C2-symmetric like the above complexes according to NMR spectra, but has one uncoordinated thiazoline unit in the solid state. This is a result of increased ring strain at the smaller titanium metal centre.  相似文献   

4.
The lithiation of 4-heterosubstituted dibenzothiins 1 (phenoxathiin, phenothiazine and thianthrene) with lithium and a catalytic amount of 4,4′-di-tert-butylbiphenyl (DTBB, 7.5% molar) in THF at temperatures ranging from −90 to −78°C gives the corresponding functionalised organolithium intermediate I, which by reaction with different electrophiles [H2O, D2O, ButCHO, PhCHO, Ph(CH2)2CHO, Me2CO, Et2CO, (CH2)5CO, (CH2)7CO] at the same temperature, followed by hydrolysis, gives the expected functionalised thiols 2. Cyclisation of some thiols 2 under acidic conditions leads to the corresponding seven-membered dibenzo heterocycles 5. In the case of thianthrene 1c, after addition of a carbonyl compound as the first electrophile [MeCHO, ButCHO, Me2CO, Et2CO, (CH2)5CO], the corresponding intermediate II can be lithiated again and react with a second electrophile. Diols 3 are obtained after hydrolysis when a carbonyl compound [ButCHO, PhCHO, Ph(CH2)2CHO, Me2CO, Et2CO, (CH2)5CO] is used as the second electrophile. Acidic cyclisation of diols 3 gives substituted phthalans 6 in almost quantitative yields. Finally, in the case of using carbon dioxide as the second electrophile, phthalides 4 are obtained after acidic hydrolysis.  相似文献   

5.
Zinc β-diketiminates containing the N,N′-chelating ligand [{N(SiMe3)C(Ph)}2CH] (≡LL) [Zn(LL)(μ-Cl)]2 (1) and [ZnEt(LL)thf] (2) were prepared from 2ZnCl2 + [Li(LL)]2 and ZnEt2 + H(LL), respectively. The new phenols 2-(N-R-piperazinyl-N′-methyl)-4,6-di-tert-butylphenol [R = Ph (3a), Me (3b)] and 2,2-[μ-N,N′-piperazindiyldimethyl]-bis(4,6-di-tert-butylphenol) (4) were obtained from 2,4-tBu2C6H3OH, (CH2O)n and the appropriate piperazine. Zinc phenoxides 5, 7 and 8 were derived from 2ZnEt2 with 2(3a), 2(3b) and 4, respectively. Controlled methanolysis of 5 furnished the bis(phenoxo)zinc compound Zn[OC6H2tBu2-2,4-{CH2N(CH2CH2)2NPh}-6]2 (6). The X-ray structures of the crystalline zinc compounds 1, 2, 5, 6, 7 and 8, are presented; each of 5-8 contains two six-membered rings. The centrosymmetric molecule 1 has a rhomboidal (ZnCl)2 core with exceptionally different Zn-Cl and Zn-Cl′ bond lengths of 2.248(1) and 2.509(1) Å, respectively. None of 1, 2 or 5-8 was an effective catalyst for the copolymerisation of an oxirane and CO2.  相似文献   

6.
Three monochlorotitanium complexes Cp′Ti(2,4-tBu2-6-(CPh2O)C6H2O)Cl [Cp′ = η5-C5H5 (2), η5-C5(CH3)5 (3), η5-C5H2Ph2CH3 (4)] have been synthesized in high yields (>90%) by the reaction of corresponding Cp′TiCl3 with the dilithium salt of ligand 2,4-tBu2-6-(CPh2OH)C6H2OH (1). When activated by [Ph3C]+[B(C6F5)4] and AliBu3, complexes 24 exhibit reasonable catalytic activity for ethylene polymerization, producing polyethylenes with moderate molecular weights and melting points. Addition of excess water to complex 2 gave the oxo-bridged complex [Ti(η5-C5H5)(2,4-tBu2-6-(CPh2O)C6H2O)]2O (5). Complexes 4 and 5 were characterized by single crystal X-ray diffraction.  相似文献   

7.
Reactions of Me5Al3[OC(C6H5)2C(C6H5)2O]2 (1) with alcohols ROH (R = Me, Et, tBu) in a 1:1 molar ratio afforded the compound Me2Al2[OC(C6H5)2C(C6H5)2O]2(C4H8O) (2) and a mixture of methylaluminum alkoxides. The alcohols acted as the factor formally eliminating a molecule of Me3Al (as a methylaluminum alkoxide) from compound 1. tBu3Al reacted with an equimolar amount of benzopinacol to form the monomeric complex tBuAl[OC(C6H5)2C(C6H5)2O](C4H8O) (3). Reactions of Me3Ga and Me3In with benzopinacol yielded trinuclear complexes Me5M3[OC(C6H5)2C(C6H5)2O]2 (4 (M = Ga), 5 (M = In)), isostructural to compound 1. In the presence of water and alcohols, compounds 4 and 5 underwent a decomposition reaction to benzopinacol and a mixture of metalloxanes and alkoxides. An unusual methylmethoxo indium benzopinacolate Me6In4[OC(C6H5)2C(C6H5)2O]2(OCH3)2 (6) was obtained in the reaction of benzopinacol with Me3In and Me2InOMe in a 1:1:1 molar ratio. Molecular structures of the compounds 3, 4 and 6 were determined by X-ray crystallography.  相似文献   

8.
Syntheses and crystal structures of [tBu3SbCr(CO)5] (1), [tBu3BiM(CO)5] [M = Cr (2), W (3)] and [tBu3BiMnCp′(CO)2] (4) (Cp′ = η5-C5H4CH3) are reported.  相似文献   

9.
Reactions of 1,2-catechol with tBu3M (M = Ga, In) have been studied. Trinuclear compounds [tBu5M3(OC6H4O)2] [M = Ga (1), M = In (2)] were synthesised in the reaction of 2 equiv. of C6H4(OH)2 with 3 equiv. of tBu3M in refluxing solvents. At room temperature the reaction of 1,2-catechol with tBu3In in Et2O leads to the formation of a binuclear complex [tBu4In2(OC6H4OH)2 · 2Et2O] (3) possessing a four-membered In2O2 core and two unreacted hydroxyl groups. The same reaction carried out in a non-coordinating solvent (CH2Cl2) results in formation a compound [tBu3In2(OC6H4O)(OC6H4OH)] (4), which undergoes a reaction with tBu3In to yield the product 2. Moreover two intermediate isomeric products 5 and 6 of formula [tBu3Ga2(OC6H4O)(OC6H4OH)] were isolated from the post-reaction mixture of 1,2-catechol with tBu3Ga. The compound 6 possessing a different coordination of gallium atoms than 5 is a result of the intramolecular rearrangement of the compound 5 to decrease the steric repultion between ligands. Compounds 3 and 6 were structurally characterised. According to the structure of intermediate products 3-6 a reaction pathway of 1,2-catechols with group 13 metal trialkyls was proposed.  相似文献   

10.
Hexanuclear oxo titanium(IV) siloxo carboxylate complexes with the general formula [Ti6O6(OSi(CH3)3)6(OOCR)6] (R = But (1), CH2But (2), C(CH3)2Et (3)) were synthesized in quantitative yield, by the reaction of Ti(OSiMe3)4 with the appropriate organic acid. Crystal structure determination revealed that molecules of 13 are composed of [Ti6-(μ3-O)6] cores stabilized by six synsyn carboxylato bridges and six terminal siloxide ligands. Each metal atom is surrounded by six oxo atoms, capping the triangular faces of the distorted octahedron. Spectral characterization (IR, NMR) of 13 revealed a significant non-equivalence of the carboxylate group interactions, resulting from the asymmetry of the Ti-μ-OOC bonds of the synsyn bridges. The thermal stability of the studied compounds was determined from TGA/DTA analysis.  相似文献   

11.
Complexes of three related 1-azapentadienyl ligands [N(SiMe2R1)C(But)(CH)3SiMe2R], abbreviated as L (R = But, R= Me), L′ (R = Me = R1), and L″ (R = But = R1), are described. The crystalline compounds Sn(L)2 (1), Sn(L′)2 (2), [Sn(L′)(μ-Cl)]2 (3) and [Sn(L″)(μ-Cl)]2 (4) were prepared from SnCl2 and 2 K(L), 2 K(L′), K(L′) and K(L″), respectively, in thf. Treatment of the appropriate lithium 1-azapentadienyl with Si(Cl)Me3 yielded the yellow crystalline Me3Si(L) (5) and the volatile liquid Me3Si(L′) (6) and Me3Si(L″) (7), each being an N,N,C-trisilyldieneamine. The red, crystalline Fe(L)2 (8) and Co(L′)2 (9) were obtained from thf solutions of FeCl2 with 2 Li(L)(tmeda) and CoCl2 with 2 K(L′), respectively. Each of 1-9 gave satisfactory C, H, N analyses; 6 and 7 (GC-MS) and 1, 2, 8 and 9 (MS) showed molecular cations and appropriate fragments (also 3 and 4). The 1H, 13C and 119Sn NMR (1-4) and IR spectra support the assignment of 1-4 as containing Sn-N(SiMe2R1)-C(But)(CH)3SiMe2R moieties and 5-7 as N(SiMe3)(SiMe2R1)C(But)(CH)3SiMe2R molecules; for 1-4 this is confirmed by their X-ray structures. The magnetic moments for 8 (5.56 μB) and 9 (2.75 μB) are remarkably close to the appropriate Fe and Co complex [M{η3-N(SiMe3)C(But)C(H)SiMe3}2]; hence it is proposed that 8 and 9 have similar metal-centred, centrosymmetric, distorted octahedral structures.  相似文献   

12.
Di(tert-butylmethyl)ketazine (I) reacts with n-BuLi in a 1:1 molar ratio to give a monolithium salt (II). The reaction of II with tBu2SiF2 in n-hexane leads, even in a 1:1 molar ratio, to the formation of the isomeric five- and four-membered ring compounds 1 and 2. Compound 1 has an endocyclic imine and an exocyclic enamine unit. The opposite is found for 2. The acyclic monosubstitution product, tBu2SiFCH2-CtBuN-NCtBuCH3 (III) could not be isolated. It reacts with the lithium ketazide to give 1 or 2. I is reformed. The reaction in THF yields only the four-membered ring 2. In a comparable reaction of the lithium ketazide and (H3C)2SiF2, the substitution product 3 could be isolated. A possible formation mechanism for 2 includes an intermediate silene IV. Both compounds 1 and 2 react with H3C-OH under cleavage of the endocyclic Si-N-bond to give the addition product 5. The reaction mechanism includes a hydrogen shift from a nitrogen atom to a carbon atom via an imine-enamine tautomerism. In a 2:1 molar ratio, n-BuLi and the di(tert-butylmethyl)-ketazine (I) form the dilithium salt, 6. Compound 6 crystallizes from THF as trimer with four imine and two enamine units. A seven-membered ring (7) isomeric to 1 and 2 is the result of the reaction of 6 with tBu2SiF2. Compound 7 contains one imine and one enamine unit in the ring skeleton.The comparable reaction of the (CH3)3Si-substituted dilithium-di(tert-butylmethyl)ketazide and tBu2SiF2 yields the five-membered ring compound 8 with one endocyclic imine and one exocyclic enamine unit.Quantum chemical calculations of 1, 2, 7 and the intermediate silene IV have been carried out and show a low energy difference between the cyclic silyl-ketazine isomers.  相似文献   

13.
The substituted pyrazole palladium complexes, (3,5-tBu2pz)2PdCl2 (1) (3,5-Me2pz)2PdCl2 (2), (3-Mepz)2PdCl2 (3) and (pz)2PdCl2 (4) (pzH=pyrazole), can be prepared from the reaction of (COD)PdCl2 with the appropriate pyrazole. The chloromethyl derivative, (3,5-tBu2pz)2PdCl(Me) (5), was prepared from (COD)PdClMe and tBu2pzH. X-ray crystal structure determination of 1 and 5 established their structures in the solid state to be the trans-isomer. After activation of 1-4 and 5 with methylaluminoxane (MAO) the resulting palladium complexes were used as catalysts in ethylene polymerization, yielding linear high-density polyethylene (HDPE). The highest activity was observed for (3,5-tBu2pz)PdClMe.  相似文献   

14.
The dialkyl complexes, (R = Pri, R′ = Me (2a), CH2Ph (3a); R = Bun, R′ = Me (2b), CH2Ph (3b); R = But, R′ = Me (2c), CH2Ph (3c); R = Ph, R′ = Me (2d), CH2Ph (3d)), have been synthesized by the reaction of the ansa-metallocene dichloride complex, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}Cl2] (R = Pri (1a), Bun (1b), But (1c), Ph (1d)), and two molar equivalents of the alkyl Gringard reagent. The insertion reaction of the isocyanide reagent, CNC6H3Me2-2,6, into the zirconium-carbon σ-bond of 2 gave the corresponding η2-iminoacyl derivatives, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}{η2-MeCNC6H3Me2-2,6}Me] (R = Pri (4a), Bun (4b), But (4c), Ph (4d)). The molecular structures of 1b, 1c and 3b have been determined by single-crystal X-ray diffraction studies.  相似文献   

15.
The bi-functional carbamoyl methyl pyrazole ligands, C5H7N2CH2CONBu2 (L1), C5H7N2CH2CONiBu2 (L2), C3H3N2CH2CONBu2 (L3), C3H3N2CH2CONiBu2 (L4) and C5H7N2CH2CON(C8H17)2 (L5) were synthesized and characterized by spectroscopic and elemental analysis methods. The selected coordination chemistry of L1 to L4 with [UO2(NO3)2 · 6H2O], [La(NO3)3 · 6H2O] and [Ce(NO3)3 · 6H2O] has been evaluated. Structures for the compounds [UO2(NO3)2 C5H7N2CH2CONBu2] (6) [UO2(NO3)2 C5H7N2CH2CONiBu2] (7) and [Ce(NO3)3{C3H3N2CH2CONiBu2}2] (11) have been determined by single crystal X-ray diffraction methods. Preliminary extraction studies of the ligand L5 with U(VI) and Pu(IV) in tracer level showed an appreciable extraction for U(VI) and Pu(IV) up to 10 M HNO3 but not for Am(III). Thermal studies of the compounds 6 and 7 in air revealed that the ligands can be destroyed completely on incineration.  相似文献   

16.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

17.
The reaction of 1,3-dicloro-2-butene (1; 5:1 Z:E-mixture) with lithium powder and a catalytic amount of 4,4′-di-tert-butylbiphenyl (DTBB, 1% molar) in the presence of different electrophiles [EtCHO, PriCHO, ButCHO, c-C6H11CHO, Me2CO, Et2CO, (CH2)4CO, (CH2)5CO, (c-C3H5)2CO, Me3SiCl] in THF at temperatures ranging between −78 and −50°C gives, after hydrolysis with water, the corresponding products 2 in different Z:E-ratios depending on the electrophile used. Treatment of some diols 2 with hydrochloric acid gives dienic alcohols 3 or substituted dihydropyrans 4, depending on the structure of the starting diol. Finally, the same dichlorinated starting material is transformed into the corresponding allylic amines derived from morpholine and benzyl methyl amine and submitted to the same DTBB-catalysed lithiation as above, so after reaction with different electrophiles [ButCHO, c-C6H11CHO, Me2CO, Et2CO, (CH2)4CO, (CH2)5CO, Me3SiCl] and final hydrolysis with water, compounds 7 are isolated having a Z-configuration. A mechanistic explanation for this behaviour is given.  相似文献   

18.
Hexanuclear oxo titanium(IV) isopropoxide carboxylates, of the general formula [Ti6O6(OPri)6(O2CR)6] (R = But (1), CH2But (2)) and [Ti6O6(OPri)6(O2CC(CH3)2Et)6] · 0.5(C7H8) (3), have been synthesized as polycrystalline powders in order to study their thermal properties and usability as TiO2 CVD precursors. Analysis of thermogravimetric and variable temperature (VT-IR) data shows that the thermal stability of the synthesized complexes decreases as follows 3 > 2 > 1. The composition of the vapors formed during the thermolysis of 13 were qualitatively analysed with VT-IR methods and mass spectrometry (MS-EI). According to obtained results, the decomposition of 1 and 2 proceeds with a partial decomposition and the formation of a volatile and stable titanium species, sufficient for their transport in vapors. The formation of volatile titanium-containing derivatives is an important factor that decides the application of 1 and 2 as precursors in CVD experiments. The high stability of 3 causes the thermal decomposition of this complex to be observed just above 573 K, and volatile titanium-containing derivatives were not detected in vapors. These results indicate that 3 could not be used as a precursor in CVD processes.  相似文献   

19.
Eleven borosiloxane [R′Si(ORBO)3SiR′] compounds where R′ = But and R = Ph (1), 4-PhC6H4 (2), 4-ButC6H4 (3), 3-NO2C6H4 (4), 4-CH(O)C6H4 (5), CpFeC5H4 (6), 4-C(O)CH3C6H4 (7), 4-ClC6H4 (8), 2,4-F2C6H3 (9), and R′ = cyclo-C6H11 and R = Ph (10), and 4-BrC6H4 (11) have been synthesized and characterized by spectroscopic (IR, NMR), mass spectrometric and, for compounds where R′ = But and R = 4-PhC6H4 (2), 4-ButC6H4 (3), 3-NO2C6H4 (4), CpFeC5H4 (6) and 2,4-F2C6H3 (9), X-ray diffraction studies. These compounds contain trigonal planar RBO2 and tetrahedral R′SiO3 units located around 11-atom “spherical” Si2O6B3 cores. The dimensions of the Si2O6B3 cores in compounds 2, 3, 4, 6 and 9 are remarkably similar. The reaction between [ButSi{O(PhB)O}3SiBut] (1), and excess pyridine yields the 1:1 adduct [ButSi{O(PhB)O}SiBut]. NC5H5 (12) while the reaction between 1 and N,N,N′,N′-tetramethylethylenediamine in equimolar amounts affords a 2:1 borosiloxane:amine adduct [ButSi{O(PhB)O}3SiBut]2 · Me2NCH2CH2NMe2 (13). Compounds 12 and 13 were characterised with IR and (1H, 13C and11B) NMR spectroscopies and the structure of the pyridine complex 12 was determined with X-ray techniques.  相似文献   

20.
The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O)CH2-3,5-R2C3HN2 (1a, R = Me; 1b, R = But), were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with PhC(O)CH2Br. Reaction of 1a or 1b with (R1 = Me, Et) yielded N,O-chelate alkylaluminum complexes (2a, R = R1 = Me; 2b, R = But, R1 = Me; 2c, R = Me, R1 = Et). Compound 1a was readily lithiated with LiBun in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl2 or AlCl3 yielded five-coordinated aluminum complexes [XAl(OC(Ph)CH{(3,5-Me2C3HN2)-1})2] (4, X = Me; 5, X = Cl). Reaction of 5 with an equiv of LiHBEt3 generated [Al(OC(Ph)CH{(3,5-Me2C3HN2)-1})3] (6). Complex 6 was also obtained by reaction of 3 with 1/3 equiv of AlCl3. Treatment of 5 with 2 equiv of AlMe3 yielded complex 2a, whereas with an equiv of AlMe3 afforded a mixture of 2a and [Me(Cl)AlOC(Ph)CH{(3,5-Me2C3HN2)-1}] (7). Compounds 1a, 1b, 2a-2c and 4-6 were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for 2a or a distorted trigonal bipyramid for 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号