首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel bridged platinum(II) biscarbene complexes are reported: 1,1′-dimethyl-3,3′-methylene-4-diimidazolin-2,2′-diylidene platinum(II) (3) and 1,1′-dimethyl-3,3′-ethylene-4-diimidazolin-2,2′-diylidene platinum(II) complexes 4 are directly accessible in high yields starting from platinum halides. The one-pot synthesis obviates the need for multi-step reactions via metal precursors or free carbenes. An X-ray crystal structure of 1,1′-dimethyl-3,3′-methylene-4-diimidazolin-2,2′-diylidene platinum(II) dibromide (3b) confirmed the structural similarity to the known corresponding palladium complexes. Since free 1,1′-di-R-3,3′-methylene-4-diimidazolin-2,2′-diylidenes are only available in low yields this synthetic route provides an easy access to the corresponding carbene complexes.  相似文献   

2.
The reaction of 4-iodobenzenesulfonamide or 4-fluorobenzenesulfonamide with CS2 and KOH in dimethylformamide yielded the potassium N-R-sulfonyldithiocarbimates, K2(RSO2NCS2) [R = 4-IC6H4 (1) and 4-FC6H4 (2)]. These salts reacted with K2[PtCl4] in water/methanol to yield complex anions bis(N-R-sulfonyldithiocarbimato)platinate(II), which were isolated as their tetrabutylammonium salts, (Bu4N)2[Pt(RSO2NCS2)2] [R = 4-IC6H4 (3) and 4-FC6H4 (4)]. The structures of 2–4 were determined by X-ray crystallography. The Pt2+ in both complexes 3 and 4 lies at the inversion centre and the PtS4 moiety has a distorted square-planar configuration. The compounds were also characterized by IR, 1H NMR and 13C NMR spectroscopies, and elemental analyses. The molar conductance data are consistent with the fact that 3 and 4 are dianionic complexes.  相似文献   

3.
The reaction between 1,2-bis[3-(3,5-dimethyl-1-pyrazolyl)-2-thiapropyl]benzene (bddf) and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) in a 1:1 M/L ratio in CH2Cl2 or acetonitrile solution, respectively, gave the complexes trans-[MCl2(bddf)] (M = Pd(II) (1), Pt(II) (4)), and in a 2:1 M/L ratio led to [M2Cl4(bddf)] (M = Pd(II) (2), Pt(II) (5)). Treatment of 1 and 4 with AgBF4 and NaBPh4, respectively, gave the compounds [Pd(bddf)](BF4)2 (3) and [Pt(bddf)](BPh4)2 (6). When complexes 3 and 6 were heated under reflux in a solution of Et4NBr in CH2Cl2/CH3OH (1:1) for 24 h, analogous complexes to 1 and 4 with bromides instead of chlorides bonded to the metallic centre were obtained. These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 1H{195Pt}, 13C{1H}, 195Pt{1H} NMR, HSQC and NOESY spectroscopies. The X-ray crystal structure of the complex [Pd(bddf)](BF4)2 · H2O has been determined. The metal atom is tetracoordinated by the two azine nitrogen atoms of the pyrazole rings and two thioether groups.  相似文献   

4.
Two dinuclear Co(II) complexes, [Co2(L)2(EtOH)4]·4ClO4 (1) and [Co2(L)2(H2O)2(NO3)2]·2NO3 (2) (L?=?4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole), have been obtained and characterized by IR, elemental analysis, and single-crystal X-ray diffraction analysis. The stabilization of their crystal lattices is maintained by strong H-bonds between counterions and host framework, which lead to various supramolecular architectures. The urease inhibitory properties of 1, 2, and L were investigated, where the two complexes revealed strong urease inhibition activities. Docking simulations of 2 have been performed with H. pylori urease (PDB code: 1E9Z) to rationalize their binding models.  相似文献   

5.
Four platinum(II) complexes, [PtCl2L] (L = (4-fluorophenyl)pyridin-2-ylmethylene-amine, 1; (4-chlorophenyl)pyridin-2-ylmethyleneamine, 2; (4-bromophenyl)pyridin-2-ylmethyleneamine, 3 and (4-iodophenyl)pyridin-2-ylmethyleneamine, 4) have been synthesized and characterized by CHN analysis, IR and UV–Vis spectroscopy. The crystal structures of 1 and 2 were determined using single crystal X-ray diffraction. The coordination polyhedron about the platinum (II) center in the complexes is best described as distorted square planar. The complexes undergo stacking to form a zigzag Pt···Pt···Pt chain containing both short (3.57(7) Å in 1 and 3.62(8) Å in 2) and long (5.16(7) Å in 1 and 5.41(9) Å in 2) Pt···Pt separations through the crystal. The compounds absorb moderately in the visible region, owing to a charge-transfer-to-diimine electronic transition. The redox potentials are approximately insensitive to the substituents on the phenyl ring of the ligands.  相似文献   

6.
The syntheses of platinum(II) complexes of bis(dimethylphosphinylmethylene)amine and bis(aminomethyl)phosphinic acid were investigated. In the case of bis(dimethyl-phosphinylmethylene)amine the reaction with K2[PtCl4] yields the potassium amino-trichloroplatinate K[PtCl3L] (L?=?bis(dimethylphosphinylmethylene)amine), which was characterized by multinuclear (1H, 13C, 31P, and 195Pt) NMR spectroscopy in solution. Bis(aminomethyl)phosphinic acid reacts with K2[PtCl4] under strictly controlled pH conditions to give colorless crystals of the cisplatin analog K[PtCl2L′] (L′?=?bis(aminomethyl)phosphinate). This complex was characterized by multinuclear NMR spectroscopy in solution as well as by single-crystal X-ray diffraction in the solid state. The bis(aminomethyl)phosphinate coordinates to platinum via both amino functions, thus acting as a chelating ligand.  相似文献   

7.
Two novel dinuclear organotin(IV) complexes [n-Bu2Sn(imda)(H2O)]2·Bipy (1) and [n-Bu2Sn(imda)(H2O)]2·Phen (2) [H2imda = iminodiacetic acid, Bipy = 2,2′-bipyridine and Phen = 1,10-phenanthroline] were synthesised and characterized employing IR, 1H, 13C, 119Sn NMR, and 119Sn Mössbauer spectroscopic and elemental analyses. Single crystal X-ray crystallography of 1 has confirmed that it is a binuclear Sn(IV) species formed via carboxylate bridges where each metal adopted a seven coordinate distorted pentagonal bipyramidal geometry. The iminodiacetate dianion (imda2−) acts as a potential tridentate [N,O,O] carboxylate bridging ligand. The packing revealed that the additional α-diimine (Bipy or Phen) does not coordinate to metal ion. However, its presence in the crystal lattice as spacer helps for the formation of a supramolecular framework by bringing the two binuclear species close enough through extensive H-bonding. The in vitro cytotoxicity of compounds 1 and 2 indicate better results than cisplatin against three tumor cell lines investigated.  相似文献   

8.
New platinum complexes have been synthesized by the reaction of Na2PtCl4 with 2-acetylpyridine-4-cyclohexyl-thiosemicarbazone, HAc4CyclHexyl (1). The new complexes [Pt(Ac4CyclHexyl)Cl] (2) and [Pt(Ac4CyclHexyl)2] (3) have been characterized by elemental analyses and spectroscopic studies. The crystal structure of the complex [Pt(Ac4CyclHexyl)Cl] · DMF has been solved by single-crystal X-ray diffraction. The anion of Ac4CyclHexyl coordinates in a planar conformation to the central platinum(II) through the pyridyl N, azomethine N and thiolato S atoms. The crystal packing is determined by double intermolecular hydrogen interactions, π–π, Pt–C and Pt–π contacts. The cytotoxic activities of 13 have been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines: MCF-7 (human breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma) and a mouse L-929 (a fibroblast-like cell line cloned from strain L). The compounds 13 display IC50 values in a μM range better than that of the antitumor drug cisplatin and are considered as agents with potential antitumor activity candidates for further stages of screening in vitro and/or in vivo.  相似文献   

9.
Reactions of [Pt2(μ-S)2(PPh3)4] with Ph3PbCl, Ph2PbI2, Ph2PbBr2 and Me3PbOAc result in the formation of bright yellow to orange solutions containing the cations [Pt2(μ-S)2(PPh3)4PbR3]+ (R3 = Ph3, Ph2I, Ph2Br, Me3) isolated as PF6 or BPh4 salts. In the case of the Me3Pb and Et3Pb systems, a prolonged reaction time results in formation of the alkylated species [Pt2(μ-S)(μ-SR)(PPh3)4]+ (R = Me, Et). X-ray structure determinations on [Pt2(μ-S)2(PPh3)4PbMe3]PF6 and [Pt2(μ-S)2(PPh3)4PbPh2I]PF6 have been carried out, revealing different coordination modes. In the Me3Pb complex, the (four-coordinate) lead atom binds to a single sulfur atom, while in the Ph2PbI adduct coordination of both sulfurs results in a five-coordinate lead centre. These differences are related to the electron density on the lead centre, and indicate that the interaction of the heterometal centre with the {Pt2S2} metalloligand core can be tuned by variation of the heteroatom substituents. The species [Pt2(μ-S)2(PPh3)4PbR3]+ display differing fragmentation pathways in their ESI mass spectra, following initial loss of PPh3 in all cases; for R = Ph, loss of PbPh2 occurs, yielding [Pt2(μ-S)2(PPh3)3Ph]+, while for R = Me, reductive elimination of ethane gives [Pt2(μ-S)2(PPh3)3PbMe]+, which is followed by loss of CH4.  相似文献   

10.
Substitution reactions of the dinuclear Pt(II) complexes, [{Pt(en)Cl}2(μ-pz)]2+ (1), [{Pt(dach)Cl}2(μ-pz)]2+ (2) and [{Pt(dach)Cl}2(μ-4,4?-bipy)]2+ (3), and corresponding aqua analogs with selected biologically important ligands, viz. 1,2,4-triazole, L-histidine (L-His) and guanosine-5?-monophosphate (5?-GMP) were studied under pseudo-first-order conditions as a function of concentration and temperature using UV–vis spectrophotometry. The reactions of the chloride complexes were followed in aqueous 25 mmol L?1 Hepes buffer in the presence of 40 mmol L?1 NaCl at pH 7.2, whereas the reactions of the aqua complexes were studied at pH 2.5. Two consecutive reaction steps, which both depend on the nucleophile concentration, were observed in all cases. The second-order rate constants for both reaction steps indicate a decrease in the order 1 > 2 > 3 for all complexes. Also, the pKa values of all three aqua complexes were determined. The order of the reactivity of the studied ligands is 1,2,4-triazole > L-His > 5?-GMP. 1H NMR spectroscopy and HPLC were used to follow the substitution of chloride in the dichloride 1, 2, and 3 complexes by guanosine-5?-monophosphate (5?-GMP). This study shows that the inert and bridging ligands have an important influence on the reactivity of the studied complexes.  相似文献   

11.
Novel phosphine oxides, (((3-methylpyridin-2-yl)amino)methyl)diphenylphosphine oxide (1) and diphenyl((pyrazin-2-ylamino)methyl)phosphine oxide (2), were synthesized and characterized. Phosphines ligands (3 and 4) were obtained by the reduction of 1 and 2 with AlH3, monitored by 31P NMR spectroscopy. Pd(II) complexes of 3 and 4 were synthesized and characterized (5 and 6). The catalytic activity of 5 and 6 was tested on the reaction of styrene with both activated and deactivated aryl bromides in air. The results of the catalytic experiments were discussed through DFT calculations.  相似文献   

12.
Four titanium(IV) carboxylate complexes [Ti(η5-C5H5)2(O2CCH2SMes)2] (1), [Ti(η5-C5H4Me)2(O2CCH2SMes)2] (2), [Ti(η5-C5H5)(η5-C5H4SiMe3)(O2CCH2SMes)2] (3) and [Ti(η5-C5Me5)(O2CCH2SMes)3] (4; Mes = 2,4,6-Me3C6H2) have been synthesised by the reaction of the corresponding titanium derivatives [Ti(η5-C5H5)2Cl2], [Ti(η5-C5H4Me)2Cl2], [Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] and [Ti(η5-C5Me5)Cl3] and two (for 13) or three (for 4) equivalents of mesitylthioacetic acid. Complexes 14 have been characterized by spectroscopic methods and the molecular structure of the complexes 1, 2 and 4 have been determined by X-ray diffraction studies. The cytotoxic activity of 14 was tested against tumor cell lines human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x, and normal immunocompetent cells, that is peripheral blood mononuclear cells PBMC and compared with those of the reference complexes [Ti(η5-C5H5)2Cl2] (R1), [Ti(η5-C5H4Me)2Cl2] (R2), [Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] (R3) and cisplatin. In all cases, the cytotoxic activity of the carboxylate derivatives was higher than that of their corresponding dichloride analogues, indicating a positive effect of the carboxylato ligand on the final anticancer activity. Complexes 14 are more active against K562 (IC50 values from 72.2 to 87.9 μM) than against HeLa (IC50 values from 107.2 to 142.2 μM) and Fem-x cells (IC50 values from 90.2 to 191.4 μM).  相似文献   

13.
Oxidative addition reactions of Cl2CPR (R = 2,4,6-tris(trifluoromethyl)phenyl (Ar) or 2,6-bis(trifluoromethyl)phenyl (Ar′) with Pt(PPh3)4 yield the cis and trans (at platinum) complexes [PtCl(ClCPAr)(PPh3)2] and [PtCl(ClCPAr′)(PPh3)2]. All starting materials and intermediates have been characterised by NMR spectroscopy. The crystal and molecular structures of the trans-platinum complexes have been determined by single-crystal X-ray diffraction at low temperature.  相似文献   

14.
15.
The mononuclear cations of the general formula [(η6-arene)RuCl(dpqMe2)]+ (dpqMe2 = 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline; arene = C6H6, 1; C6H5Me, 2; p-PriC6H4Me, 3; C6Me6, 4) as well as the dinuclear dications [(η6-arene)2Ru2Cl2(μ-dpqMe2)]2+ (arene = C6H6, 5; C6H5Me, 6; p-PriC6H4Me, 7; C6Me6, 8) have been synthesised from 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline (dpqMe2) and the corresponding chloro complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-C6H5Me)Ru(μ-Cl)Cl]2, [(η6-p-PriC6H4Me)Ru(μ-Cl)Cl]2 and [(η6-C6Me6)Ru(μ-Cl)Cl]2, respectively. The X-ray crystal structure analyses of [1][PF6], [3][PF6] and [6][PF6]2 reveal a typical piano-stool geometry around the metal centre; in the dinuclear complexes the two chloro ligands, with respect to each other, are found to be trans oriented.  相似文献   

16.
The reactions of the cycloaurated gold(III) complexes (2-bp)AuCl2 (2-bp = 2-benzylpyridyl) or (damp)AuCl2 (damp = Me2NCH2C6H4) with an excess of sodium saccharinate (Nasacc), potassium phthalimidate (Kphth), or with isatin and trimethylamine in refluxing methanol results in the successful isolation of a series of new gold(III) imidate complexes. These were characterised by NMR and IR spectroscopies, and by X-ray structure determinations on (2-bp)Au(sacc)2 and (2-bp)Au(phth)2. In both structures, the planes of the saccharinate and the phthalimidate ligands are orientated almost perpendicular to the gold coordination plane. As expected from trans-influence considerations, the Au–N(imidate) bond lengths trans to the aryl carbon atoms are longer than the Au–N(imidate) bond lengths trans to the pyridyl groups. The complexes have also been characterised by electrospray ionisation MS; in the presence of halide ligands, one imidate ligand is readily displaced. Anti-tumour (P388 murine leukemia) and selected anti-microbial data for the new complexes are reported. Surprisingly, all three damp complexes had low anti-tumour activity, which is likely to be a consequence of the poor solubility of these complexes. The synthesis and characterisation of a related gold(III) bis(amidate) complex derived from sulfathiazole is also described.  相似文献   

17.
Three new dinuclear Zn(II) complexes [Zn(L)(μ1,1-N3)Zn(L)(N3)] · 1.5H2O (1), [Zn(L)(μ1,1-NCO)Zn(L)(NCO)] · 1.5H2O (2) and [Zn(L)(μ1,1-NCS)Zn(L)(NCS)(OH2)] (3) have been synthesized from a potentially tetradentate N2O2-donor Schiff base ligand LH, [LH = (OCH3)(OH)C6H3CHN(CH2)2N(CH3)2], which is the condensation product of o-vanillin and 2-dimethylaminoethylamine. All the three complexes 1, 2 and 3 have been characterized by elemental analysis, IR and 1H NMR spectroscopy, TGA and fluorescence studies. Finally, their structures have been established by the single crystal X-ray diffraction method. Structural studies reveal that in complexes 1, 2 and 3 the two Zn(II) centers are held together by a μ2-phenolato oxygen atom and also by an end-on pseudohalide nitrogen (azide for 1; cyanate for 2; thiocyanate for 3) atom. Among the two deprotonated Schiff base ligands present in each complex, one acts as a tetradentate ligand (N2O2 donor set) while the other acts as a tridentate ligand (N2O donor set), having a non-coordinated methoxy group. All the synthesized complexes display intraligand 1(π–π) fluorescence and can potentially serve as photoactive materials.  相似文献   

18.
19.
20.
Reaction of cis-[PtCl2(PPh3)2] with excess 3,3-dimethylglutarimide (dmgH) and sodium chloride in refluxing methanol gives the mono-imidate complex cis-[PtCl(dmg)(PPh3)2], which was structurally characterized. The plane of the imidate ligand is approximately perpendicular to the platinum coordination plane which, coupled with restricted rotation about the Pt–N bond, results in inequivalent methyl groups and CH2 protons of the dmg ligand in the room temperature 1H NMR spectrum. These observations were corroborated by a theoretical study using density functional theory methods. The analogous bromide complex cis-[PtBr(dmg)(PPh3)2] can be prepared by replacing NaCl with NaBr in the reaction mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号