首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New macrocyclic complexes were synthesized by template reaction of 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane, 1,4-bis(2-carboxyaldehydephenoxy)butane or 1,3-bis(2-carboxyaldehydephenoxy)propane with 1,4-bis(2-aminophenoxy)butane, 1,3-bis(2-aminophenoxy)butane, 1,4-bis(4-chloro-2-aminophenoxy)butane or 1,3-bis(4-chloro-2-aminophenoxy)butane and Cu(NO3)2 ·?3H2O or Cu(ClO4)2 ·?6H2O, respectively. The complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, UV–Vis spectra, magnetic susceptibility, conductivity measurements and mass spectra. All complexes are diamagnetic and binuclear.  相似文献   

2.
Two pyrimidine based NNS tridentate Schiff base ligands S-methyl-3-((2-S-methyl-6-methyl-4-pyrimidyl)methyl)dithiocarbazate [HL1] and S-benzyl-3-((2-S-methyl-6-methyl-4-pyrimidyl)methyl)dithiocarbazate [HL2] have been synthesised by 1:1 condensation of 2-S-methylmercapto-6-methylpyrimidine-4-carbaldehyde and S-methyl/S-benzyl dithiocarbazate. One Co(III) and one Mn(II) complex of HL1 and one Mn(II) complex of HL2 have been prepared and characterized by elemental analyses, molar conductivities, magnetic susceptibilities and spectroscopic studies. All the bis-chelate complexes have a distorted octahedral arrangement with an N4S2 chromophore around the central metal ion. Each ligand molecule binds the metal ion using pyrimidyl nitrogen, azomethine nitrogen and the thiolato sulfur atoms. In the free ligand moieties, the pyrimidine nitrogen atoms, azomethine nitrogen atoms and thione sulfur atoms are in EEE orientation to each other. During chelation, all the donor sites of the ligands are reoriented to ZEZ configuration in order to facilitate the chelation process. In all the complexes, the respective ligand molecule functions as the monoanionic tridentate one. All complexes were analyzed by single crystal X-ray diffraction and significant differences concerning the distortion from octahedral geometry of the coordination environment were observed.  相似文献   

3.
Three copper(II) complexes derived from bulky ortho-hydroxy Schiff base ligands, (1)-(3), were synthesized and characterized by chemical analysis, UV-Vis, IR, μeff and mass spectrometry. The solid state structures of compounds (1)-(3) were determined. The solid state X-ray diffraction studies of these compounds show that the geometry is intermediate between square planar and tetrahedral. Moreover, EPR studies in DMF solution at 77 K suggest that the geometry of these complexes in solution is different from that observed in the solid state by X-ray crystallography. Furthermore, cyclic voltammetry studies performed for (1)-(3), indicate a dependence of the cathodic potentials upon conformational and electronic effects.  相似文献   

4.
To investigate the structure–activity relationship of L-glutamine and L-asparagine Schiff base copper complexes in applications, L-glutamine and L-asparagine Schiff bases (GV and AV) and their copper complexes [Cu3(GV)2(CH3COO)2(H2O)] · 2H2O (GVC) and [CuAV(H2O)3] (AVC) have been synthesized and characterized by molar conductance, elemental analysis, UV-Vis, IR, 1H-NMR, and TG-DTG. We examined the geometries of GV, AV, GVC, and AVC through Hartree–Fock method and electronic absorption spectra. We also tested their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis bacteria and antiproliferation activity on human breast cancer MDA-MB-231 cells. The side chain difference between L-glutamine and L-asparagine results in different geometry of GV and AV, which leads to different geometry of GVC and AVC. GVC, a trinuclear Cu(II) complex, shows the highest antibacterial activity and the highest growth inhibition activity on MDA-MB-231 cells. Our results suggest that GVC has potential as an antibacterial and anticancer agent.  相似文献   

5.
Newly synthesized mononuclear copper(II) and zinc(II) complexes containing an azo Schiff base ligand (L), prepared by condensation of 2-hydroxy-5-(o-tolyldiazenyl)benzaldehyde and propylamine, were obtained and then characterized using infrared and NMR spectroscopies, mass spectrometry and X-ray diffraction. Ligand L behaves as a bidentate chelate by coordinating through deprotonated phenolic oxygen and azomethine nitrogen. The copper and zinc complexes crystallize in triclinic and orthorhombic systems, respectively, with space groups P1 and Pca21. In these complexes, the Cu(II) ion is in a square planar geometry while the Zn(II) ion is in a distorted tetrahedral environment. The photochemical behaviors of ligand L, [Cu(L)2] and [Zn(L)2] were investigated. The azo group in L underwent reversible transcis isomerization under UV and visible irradiation. This process was inhibited for the complexes. In addition, ligand L and its copper and zinc complexes were assessed for their in vitro antibacterial activities against four pathogenic strains.  相似文献   

6.
A series of macrobicyclic unsymmetrical binuclear copper(II) complexes of compartmental ligands were synthesized from the Schiff base condensation of 1,8[N,N′-bis{(3-formyl-2-hydroxy-5-methyl)benzyl}]-1,4,8,11- tetraaza-5,5,7,12,12,14-hexa methylcyclotetradecane with diamines like 1,2-diamino ethane, 1,3-diamino propane, 1,4-diaminobutane, 1,2-diaminobenzene and 1,8-diaminonaphthalene. The complexes were characterized by elemental and spectral analysis. Electrochemical studies of the copper(II) complexes show two irreversible one-electron reduction processes around E1pc = −0.70 to −1.10 V and E2pc = −0.98 to −1.36 V. ESR spectra of the binuclear copper(II) complexes show a broad signal at g = 2.10 and μeff values in the range 1.46–1.59 BM, which convey the presence of antiferromagnetic coupling. Cryomagnetic investigation of the binuclear complexes [Cu2L3(ClO4)](ClO4) and [Cu2L4(ClO4)](ClO4) show that the observed −2J values are 144 and 216 cm−1, respectively. The observed initial rate (Vin) for the catalytic hydrolysis of p-nitrophenyl phosphate by the binuclear copper(II) complexes were in the range 1.8 × 10−5 to 2.1 × 10−5 Ms−1. The initial rate (Vin) for the catalytic oxidation of catechol to o-quinone by the binuclear copper(II) complexes were in the range 2.7 × 10−5 to 3.5 × 10−5 Ms−1. The copper(II) complexes have been found to promote cleavage of plasmid pBR 322 DNA from the supercoiled form I to the open circular form II.  相似文献   

7.
A tetradentate N2O2 donor Schiff base ligand, H2L, was synthesized by the condensation of 4,6-diacetylresorcinol with benzylamine. The structure of the ligand was elucidated by elemental analyses, IR, 1H NMR, electronic and mass spectra. Reaction of the Schiff base ligand with nickel(II), cobalt(II), iron(III), cerium(III), vanadyl(IV) and uranyl(VI) ions in 1:2 molar ratio afforded binuclear metal complexes. Also, reaction of the ligand with several copper(II) salts, including Cl-, NO3-, AcO-, ClO4- and SO42- afforded different metal complexes that reflect the non-coordinating or weakly coordinating power of the ClO(4)(-) anion as compared to the strongly coordinating power of SO42- and Cl- anions. Characterization and structure elucidation of the prepared complexes were achieved by elemental and thermal analyses, IR, 1H NMR, electronic, mass and ESR spectra as well as magnetic susceptibility measurements. The metal complexes exhibited different geometrical arrangements such as square planar, octahedral, square pyramidal and pentagonal bipyramidal arrangements. The variety in the geometrical arrangements depends on the nature of both the anion and the metal ion.  相似文献   

8.
A water soluble chloro bridged binuclear copper(II) complex (3) and mononuclear complex (4) have been synthesized from chloro substituted 2‐oxo‐1,2‐dihydroquinolin‐3‐yl‐methylene‐2 hydroxybenzohydrazide 1 and 2 and CuCl2·2H2O. The structures of the complexes have been determined by single crystal X‐ray diffraction. The binding interactions of the ligands and complexes with CT‐DNA and protein have been evaluated by absorption and emission spectroscopic method. CT‐DNA and ethidium bromide (EB) competitive studies revealed that the compounds could interact with CT‐DNA through intercalation binding mode. Interactions of the compounds with BSA were also studied by UV−visible, fluorescence and synchronous fluorescence spectroscopic methods which showed that the compounds had a strong binding affinity with BSA through static quenching process. The cytotoxic effect of the compounds examined on cancer cell lines, such as A549 (lung cancer) and MCF7 (breast cancer) cell lines showed that all four compounds exhibited substantial cytotoxic activity.  相似文献   

9.
Abstract

Complexes 1-3, C34H36X4CuN2O2 (X?=?Cl, Br, I), were synthesized with copper chloride dihydrate and three new Schiff base ligands derived from amantadine and 3,5-dihalosalicylaldehydes. They were characterized by IR, UV–VIS, elemental analysis, molar conductance, and single-crystal X-ray diffraction. Single-crystal X-ray diffraction analysis reveals that 1 and 2 crystallize in the triclinic system, Pī space group. Each asymmetric unit consists of one copper(II) ion, two corresponding deprotonated Schiff base ligands and one lattice dichloromethane molecule. 3 crystallizes in the monoclinic system, P21/n space group. Each asymmetric unit consists of one copper(II) ion and two deprotonated iodo- Schiff base ligands. The tetra-coordination of the central copper(II) ion in 1-3 is constructed by two nitrogen atoms and two oxygen atoms from the corresponding Schiff base ligands, forming a distorted tetrahedral geometry. Electrochemical properties of the complexes were determined by cyclic voltammetry.

  相似文献   

10.
Cu(II) complexes of three bis(pyrrol-2-yl-methyleneamine) ligands were synthesized and characterized by elemental analyses, mass spectra, and IR spectra. X-ray diffraction analysis shows that [CuL3]2 is a dinuclear complex with an extremely distorted square-planar geometry. Furthermore, the antioxidant activities of the compounds have been investigated. The electrochemical properties of the Cu(II) complexes have also been studied by cyclic voltammetry. The Cu(II) complexes show similar superoxide dismutase (SOD) activity compared with that of the native Cu, Zn-SOD.  相似文献   

11.
12.
Two new pyrimidine based NNS tridentate Schiff base ligands S-methyl-3-((2-S-methyl-6-methyl-4-pyrimidyl)methyl)dithiocarbazate [HL1] and S-benzyl-3-((2-S-methyl-6-methyl-4-pyrimidyl)methyl)dithiocarbazate [HL2] have been synthesised by the 1:1 condensation of 2-S-methylmercapto-6-methylpyrimidine-4-carbaldehyde and S-methyl/S-benzyl dithiocarbazate. A Ni(II) complex of HL1 and Co(III) and Fe(III) complexes of HL2 have been prepared and characterized by elemental analyses, molar conductivities, magnetic susceptibilities and spectroscopic studies. All the bis-chelate complexes have a distorted octahedral arrangement with an N4S2 chromophore around the central metal ion. Each ligand molecule binds the metal ion using the pyrimidyl and azomethine nitrogen and thiolato sulfur atoms (except in the nickel complex, one ligand molecule uses the thione sulfur in lieu of thiolato sulfur atom). In the Ni(II) complex, one of the ligand molecules behaves as a neutral tridentate and the other molecule functions as a uninegative tridentate, whereas in the Co(III) and Fe(III) complexes, the ligand molecules behave as monoanionic tridentate. All the complexes were analyzed by single crystal X-ray diffraction and significant differences concerning the distortion from an octahedral geometry of the coordination environment were observed.  相似文献   

13.
Schiff base mixed-ligand copper complexes [CuL1(phen)Cl2], [CuL1(bipy)Cl2], [Cu(L1)2Cl2], [Cu(L2)2Cl2], [CuL2(bipy)Cl2], and [CuL2(phen)Cl2] (where L1?=?4-[3,4-dimethoxy-benzylidene]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazole-3-one; L2?=?4-[3-hydroxy-4-nitro-benzylidene]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazole-3-one; phen?=?1,10-phenanthroline; and bipy?=?2,2′-bipyridine) have been synthesized and characterized. Their DNA-binding properties have been studied by electronic absorption spectra, viscosity, and electrochemical measurements. The absorption spectral and viscosity results suggest that the copper(II) complexes bind to DNA via partial intercalation. The addition of DNA resulting in the decrease of the peak current of the copper(II) complexes indicates their interaction. Interaction between the complexes and DNA has also been investigated by submarine gel electrophoresis. The copper complexes cleave supercoiled pUC19 DNA to nicked and linear forms through hydroxyl radical and singlet oxygen in the presence of 3-mercaptopropionic acid as the reducing agent. These copper complexes promote the photocleavage of pUC19 DNA under irradiation at 360?nm. Mechanistic study reveals that singlet oxygen is likely to be the reactive species responsible for the cleavage of plasmid DNA by the synthesized complexes. The in vitro antimicrobial study indicates that the metal chelates have higher activity against the bacterial and fungal strains than the free ligands.  相似文献   

14.
The nitrosation of monophenylamido substituted quadridentate Schiff base complexes of copper(II) are observed to adopt N-bonded isonitroso coordination whereas the phenylisocyanation of the corresponding mononitrosated quadridentate complexes are found to prefer O-bonded isonitroso coordination.  相似文献   

15.
Compounds [Cu(L1)2] (1) and [Cu(L2)2] (2), where L1 and L2 are Schiff base ligands of 4-aminoantipyrine and substituted salicylaldehydes, were synthesized and characterized using various spectroscopic techniques such as elemental analysis, UV–Vis, IR, and NMR. The single crystal X-ray structures for L1, L2, and their corresponding Cu(II) complexes assembled in a 1:2 metal to ligand ratio were analyzed for their various weak H-bonding and dimeric association. The structural analysis of compounds 1 and 2, being the first crystal structures in this series, deserves special attention to help further the understanding in this area of structure–reactivity correlation studies. Further these compounds, composed of very similar chemical composition with a small difference in the substituent on the salicylaldehyde moiety, influenced through various weak inter- and intramolecular H-bonding and C–H?π interactions, rearrange the geometry around Cu(II) from a tetrahedrally distorted square planar geometry in [Cu(L1)2] (1) to square planar in [Cu(L2)2] (2). Steric strain imposed by the methyl substitution on the 4-aminoantipyrine moiety of the Schiff base ligand, causing this small change of the Cu(II) geometry, along with various weak interactions is analyzed in detail.  相似文献   

16.
Eight diorganotin(IV) complexes of salicylaldehyde isonicotinylhydrazone (H2SalN) R2Sn(SalN) R = t-Bu 1, Ph 2, PhCH23, o-ClC6H4CH24, p-ClC6H4CH25,m-ClC6H4CH26,o-FPhCH27, p-FC6H4CH28 were prepared. All complexes 1-8 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR analyses. The crystal structures of H2SalN and complex 1 were determined by X-ray crystallography diffraction analyses. Studies show that H2SalN is a tridentate planar ligand. For complex 1, the tin atom lies in this plane and forms a five- and six-membered chelate ring with the tridentate ligand. A comparison of the IR spectra of the ligand with those of the corresponding complexes, reveals that the disappearance of the bands assigned to carbonyl unambiguously confirms that the ligand coordinate with the tin in the enol form.  相似文献   

17.
Two new unsymmetrical copper(II) Schiff base complexes, [CuLn(py)]ClO4 (n = 1, 2) in which Ln represents a tridentate N2O type Schiff base ligand, were synthesized. Lns were derived from monocondensation of meso-1,2-diphenyl-1,2-ethylenediamine with salicylaldehyde or 3-methoxysalicylaldehyde. The reaction between [CuLn(py)]ClO4 and other salicylaldehyde derivatives resulted in new N2O2 unsymmetrical tetradentate CuII complexes, CuL3–6. Crystal structures of [CuL1(py)]ClO4, CuL4, and CuL5 were obtained. These new complexes as well as a series of related symmetrical ones (i.e. CuL7–12) were tested for their in vitro anticancer activity against human liver cancer cell line (Hep-G2) by MTT and apoptosis assay. All of the complexes showed considerable cytotoxic activity against tumor cell lines (IC50 = 5.13–16.24 μg mL?1). The symmetrical CuL7 was the most potent anticancer derivative (IC50 = 5.13 μg mL?1) compared to the control drug 5-FU (IC50 = 5.4 μg mL-1, p < 0.05). Flow cytometry experiments showed that the copper derivatives especially [CuL2(py)]ClO4 and CuL7 induced more apoptosis on Hep-G2 tumor cell lines compared to 5-FU.  相似文献   

18.
The Schiff base ligands, 2-hydroxy-N-cyclohexyl-l-naphthaldimine (I), and 3-hydroxy-N-cyclohexyl-2-naphthaldimine (II), and their corresponding CuII complexes (1–2) respectively were synthesized and characterized. The crystal and molecular structures of bis-{(cyclohexyl)[(2-oxo-1H-naphth-1-ylidene)-methyl]aminato}copper(II) (1) and bis-{(cyclohexyl)[(3-oxo-2H-naphth-2-ylidene)-methyl]aminato} copper(II) (2), were determined. The X-ray diffraction study shows that the geometry around the metal atom for (1), is stepped square planar with a step of 1.063 Å while for (2), the geometry around the metal atom for square planar with an angle between the coordination planes O(1)---Cu---N(1) and O(1a)---Cu---N(1a) of 39.9°. Electrochemical studies show a dependence of the CuII/CuI potentials on the ligand structure.  相似文献   

19.
The reactions of copper(II) chloride dihydrate and three bulky Schiff base ligands derived from rimantadine and salicylaldehyde (or methoxy-substituted salicylaldehydes), generated C38H48CuN2O2 (1), C40H52CuN2O4 (2), and C40H52CuN2O4 (3), respectively. These complexes were characterized by infrared spectra, UV–vis, elemental analysis and molar conductance. X-ray single-crystal diffraction analysis reveals that 1 has two different spatial configurations, 1a and 1b. For 1a, each asymmetric unit consists of one mononuclear copper(II) molecule. For 1b, each asymmetric unit consists of two copper(II) mononuclear molecules. All the complexes crystallize in the monoclinic system, P21/c space group for 1a and 2; P21/n space group for 1b; C2/c space group for 3. Each complex for 13 consists of one copper(II) and two corresponding deprotonated ligands. The central copper(II) in all complexes is four-coordinate via two nitrogens and two oxygens from the corresponding Schiff base ligands. The geometry around copper in 1a, 1b, and 2 is distorted square planar, but square planar in 3.  相似文献   

20.
By condensation of amantadine and 4-methoxysalicylaldehyde a new Schiff base HL was synthesized. A mixture of HL and zinc(II) chloride in an alcoholic medium leads to [Zn(HL)2Cl2] (1). However, the same reactants gave another different complex (ZnL2) (2) in the presence of NaOH. The two complexes were characterized by IR, 1H NMR, elemental analysis, molar conductance, and single-crystal X-ray diffraction. X-ray diffraction analysis reveals that complex 1 crystallizes in the triclinic system, Pī space group; each asymmetric unit consists of one zinc(II), two HL, and two chlorides. The tetra coordination of central zinc is attained by two chlorides and two oxygens from the Schiff base, forming a distorted tetrahedral geometry. Complex 2 crystallizes in the monoclinic system, P21/c space group; each asymmetric unit consists of one zinc(II) and two L. The tetra coordination of central zinc is attained by two nitrogens and two oxygens from the Schiff base, forming a distorted tetrahedral geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号