首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of copper(II) nitrate trihydrate and 2-(2-pyridyl)benzimidazole (pybzim) leads to [Cu(pybzim)2(NO3)](NO3). The compound has been studied by IR, UV–Vis spectroscopy and X-ray crystallography. The electronic structure of the [Cu(pybzim)2(NO3)]+ cation has been calculated with the density functional theory (DFT) method. The spin-allowed doublet–doublet electronic transitions of [Cu(pybzim)2(NO3)]+ have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the title compound has been discussed on this basis.  相似文献   

2.
Two mononuclear Cu(II) complexes, [Cu(L1H2)](ClO4)1.25Cl0.75·1.25H2O (1) and [Cu(L2H2)](ClO4)2 (2), of the pyridoxal Schiff base ligands N,N′-dipyridoxylethylenediimine (L1H2) and N,N′-dipyridoxyl-1,3-propanediimine (L2H2) are reported. X-ray crystal structures of both complexes are also reported. In both complexes the pyridoxal nitrogen atoms remain protonated. In the solid state, the tetradentate Schiff base ligand is virtually planar in 1, while in 2 the ligand conformation is like an inverted umbrella. In cyclic voltammetry experiments it is found that in these complexes the Cu(III) and Cu(I) states are more easily accessible than in their salen type analogs. The pyridoxal Schiff base complexes are also found to be resistant to oxidative electro-polymerization, unlike their corresponding salicyl aldehyde Schiff base complexes.  相似文献   

3.
Two novel copper(II) complexes incorporating bis(pyrazol-1-yl)methane ligand (bpzm) have been synthesized. The compounds [CuCl(bpzm)2(H2O)]Cl·H2O (1) and [Cu(N3)2(bpzm)]n (2) have been studied by IR, UV-Vis spectroscopy and X-ray crystallography. The experimental studies on the compounds 1 and 2 have been accompanied computationally by the density functional theory (DFT) calculations.  相似文献   

4.
Three new mononuclear Schiff-base complexes, namely [Mn(L)Cl] (1), [Ni(L)] (2), and [Cu(L)] (3), where L?=?anion of [N,N′-bis(2-hydroxybenzophenylidene)]propane-1,2-diamine, have been synthesized by reacting equimolar amounts of the respective metal chloride and the tetradentate Schiff base, H2L, in methanol. The complexes have been characterized by microanalytical, spectroscopic, single-crystal X-ray diffraction, and other physicochemical studies. Structural studies reveal that 1 adopts a distorted square-pyramidal geometry whereas 2 and 3 are isotypic with distorted square-planar geometries. The antibacterial activities of 13 along with their Schiff base have been tested against some Gram(+) and Gram(?) bacteria.  相似文献   

5.
The tridentate Schiff base 1-(N-salicylideneimino)-2-(N,N-diethyl-aminoethane (HL), derived from the condensation of salicylaldehyde with N,N-diethylethylenediamine, reacted with nickel(II) nitrate and azide to give a mononuclear complex of formula [Ni(L)(N3)], where HL?=?Et2N(CH2)2NCHC6H4(OH). The complex was characterized by spectroscopic and X-ray crystallographic methods. Coordination around nickel(II) is square planar. The molecular and supramolecular structure of the complex is discussed.  相似文献   

6.
Two new potentially octadentate N2O6 Schiff-base ligands 2-((E)-(2-(2-(2-((E)-2-hydroxy-3-methoxybenzylideneamino)phenoxy)phenoxy)phenylimino)methyl)-6-methoxyphenol H2L1 and 2-((E)-(2-(2-(2-((E)-2-hydroxy-3-methoxybenzylideneamino)phenoxy)-4-tert-butylphenoxy)phenylimino)methyl)-6-methoxyphenol H2L2 were prepared from the reaction of O-Vaniline with 1,2-bis(2′-aminophenoxy)benzene or 1,2-bis(2′-aminophenoxy)-4-t-butylbenzene, respectively. Reactions of H2L1 and H2L2 with copper(II) and zinc(II) salts in methanol in the presence of N(Et)3 gave neutral [CuL1]?·?0.5CH2Cl2, [CuL2], [ZnL1]?·?0.5CH2Cl2, and [ZnL2] complexes. The complexes were characterized by IR spectra, elemental analysis, magnetic susceptibility, ESI–MS spectra, molar conductance (Λm), UV-Vis spectra and, in the case of [ZnL1]?·?0.5CH2Cl2 and [ZnL2], with 1H- and 13C-NMR. The crystal structure of [ZnL1]?·?0.5CH2Cl2 has also been determined showing the metal ion in a highly distorted trigonal bipyramidal geometry. The electrochemical behavior of H2L2 and its Cu(II) complex, [CuL2], was studied and the formation constant of [CuL2] was evaluated using cyclic voltammetry. The logarithm value of formation constant of [CuL2] is 21.9.  相似文献   

7.
Two nickel(II) complexes of [1 + 1] macrocyclic Schiff base ligand (L) have been prepared by cyclocondensation reactions between 1,3-diamino-2-propanol and 2-[3-(2-formylphenoxy)-2-hydroxypropoxy] benzaldehyde, using NiX2 (X = Br, and I) salts as template agents, and characterized by elemental analyses, IR, molar conductivity and electronic spectra in both solid and solution states. The single-crystal X-ray diffractions of the complexes are also reported that contain nickel(II) ion in a distorted octahedral geometry coordination of N2O3X (X = Br, I and NO3). In all complexes the ligand behaves as a pentadentate ligand. Cyclic voltammetric studies of nickel(II) complexes indicate a quasi-reversible redox wave in the negative potential range.  相似文献   

8.
A new series of complexes of the type bis(N-substituted-salicydenaminato)copper(II) (1–9), have been synthesized and characterized by IR, UV–Vis and elemental analysis methods. The molecular structure of bis(N-2-bromophenyl-salicydenaminato)copper(II) (6), was determined using X-ray crystallography. There are two independent molecules in the structure. Each shows a neutral, mononuclear, four-coordinate, square-planar trans-Cu[N2O2] geometry and, in each, the Cu atom and the ligating atoms are coplanar. The chelating N–Cu–O angle is 91.39(11)° for molecule one and 91.20(11)° for molecule two, whereas the non-chelating N–Cu–O angles are 88.61(11) and 88.80(11)°, respectively. The trans-N–Cu–N and trans-O–Cu–O bond angles are 180°. The electronic absorption spectra of copper(II) complexes (1–9), indicate that the d–d band energy is dependent on the nature and position of substituent on phenyl ring of the salicyldenimine ligand. The UV–Vis spectra in various solvents were measured and a relationship between absorption spectra and dielectric constant of the solvents is reported.  相似文献   

9.
A pair of azido-bridged copper(II) complexes, [Cu2L2(μ 1,1-N3)2] (1) and [Cu2L2(μ 1,3-N3)2] · H2O (2) (HL = 1-[(3-dimethylaminopropylimino)methyl]naphthalen-2-ol), have been obtained from an identical synthetic procedure and starting materials with solvents as the only independent variable. Complex 1 was synthesized and crystallized using the anhydrous methanol, while 2 was synthesized and crystallized using 95% ethanol. Both complexes show interesting self-assembled structures in their crystals as elucidated by X-ray analysis. The end-on azido-bridged dinuclear 1 crystallizes in the P 1 space group. The end-to-end azido–bridged polymeric 2 crystallizes in the P21/c space group.  相似文献   

10.
The syntheses and characterization of three compounds involving tridentate “half-units” 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH) and 8-amino-4-methyl-5-aza-3-octen-2-one (HAMAO) are described. Cu(II) and Ni(II) complexes with HAMAH have been isolated as four-coordinate complexes, the fourth coordination site being taken by imidazole, and have been structurally characterized. A Cu(II) complex involving HAMAO has been isolated as a highly insoluble polymeric species. Hydroxo bridging between the metal centres is indicated.  相似文献   

11.
The air-stable di-copper(I) complexes Cu2L(SCN)2 (1) and Cu2L(SCN)1.86I0.14 (2) of the N4 macrocyclic Schiff base ligand L have been synthesized and characterized by IR, elemental analysis, UV-Vis and crystal structure determination. X-ray analysis of the complexes shows an approximate distorted trigonal planar geometry around each copper(I) ion that is constructed from one N-bonded thiocyanate (or iodide in 2) group and two imine nitrogen atoms. DFT calculations were used to determine the structural features of the Cu2L(SCN)2 complex, and these were consistent with the experimental data for the complex.  相似文献   

12.
Summary The Schiff base ligands, 3-[(Phenyl)-2-hydroxy-3H-Naphth-3-ylidene)methyl]aldamine (1) and 3-[(benzene-4-trifluoromethyl)-2-hydroxy-3H-naphth-3-ylidene)methyl]aldamine (2), and their corresponding Cu(II) complexes (I andII were synthesized. The crystal and molecular structures ofI andII were determined. CompoundI crystallizes in the triclinic crystal systema=10.804(5),b=12.589(5), andc=10.369(3) (Å), =107.72(3), =95.75(3), and =76.32(4)(°), in the space group P withZ=2. CompoundII crystallizes in the triclinic crystal systema=10.718(2),b=13.861(4), andc=10.110(9) (Å), =95.99(2), =90.16(2), and =93.90(2)(°), in the space group P withZ=2. The geometry around the metal atom in both complexesI andII is square planar.
Kupfer(II)-Komplexe von Schiffbasen von 2-Hydroxy-3-naphthaldehyd. Die Kristall-und Molekülstrukturen von Bis{(phenyl)[(2-oxo-3H-naphth-3-yliden)methyl]aminato}kupfer(II) und Bis{(benzen-4-trifluoromethyl)[(2-oxo-3H-naphth-3-yliden)methyl]aminato}kupfer(II)
Zusammenfassung Es wurden die Schiffbasen-Liganden 3-[(Phenyl)-2-hydroxy-3H-naphth-3-yliden)-methyl]aldamin (1) und 3-[(Benzen-4-trifluoromethyl)-2-hydroxy-3H-naphth-3-yliden)-methyl]aldamin (2) inklusive der entsprechenden Kupfer(II)-KomplexeI undII dargestellt. VonI undII wurden die Kristallstrukturen ermittelt. KomplexI kristallisiert im triklinen System mita=10.804(5),b=12.589(5),c=10.369(3) Å, =107.72(3), =95.75(3) und =76.32(4)° in der Raumgruppe P mitZ=2. VerbindungII kristallisiert ebenfalls im triklinen System mita=10.718(2),b=13.861(4),c=10.110(9) Å, =95.99(2), =90.16(2) und =93.90(2)° in der Raumgruppe P mitZ=2. Die Geometrie rund um Cu ist in beiden Komplexen quadratisch-planar.
  相似文献   

13.
Three mononuclear nickel(II) and copper(II) complexes, [Ni(L)2(py)2] (1), [Ni(L)2(DMF)(H2O)] (2), and [Cu(L)2] (3), where HL = 2-((Z)-(4-methoxyphenylimino)methyl)-4,6-dichlorophenol, py = pyridine and DMF = N,N-dimethylformamide, have been synthesized and their structures determined by single crystal X-ray analysis. Complexes 1–3 crystallized in the monoclinic system of the space groups C2/c, P21/n, and P21/c, respectively. The crystal structures of 1 and 2 present an octahedral geometry at the metal center and 3 shows a square-planar geometry. The FT-IR spectra, UV–vis spectra, and magnetic susceptibility measurements agree with the observed crystal structures. EPR spectra indicate a dx2–y2 ground state (g|| > g > 2.0023 and A|| > A) for 3 at RT and LNT. The results of simultaneous TG-DTA analyses of 1 and 3 showed the final degradation products are NiO for 1 and CuO for 3. The Schiff base (HL) behaves as monobasic bidentate ligand possessing N and O donor atoms. Electrochemical properties for the complexes are similar and involve two irreversible redox processes. Complex 3 exhibits the ability to inhibit jack bean urease, although its Schiff base has no ability to inhibit urease. Complex 1 exhibits more active scavenging effects against O2? than HL, 2 and 3 under the same conditions. Antibacterial screening activities of these complexes were also investigated.  相似文献   

14.
Two octahedral complexes [Ni(HL1)2](ClO4)2 (1) and [Ni(HL2)2](ClO4)2 (2) and a square planar complex [Ni(HL3)]ClO4 (3) have been prepared, where [HL1 = 3-(2-amino-ethylimino)-butan-2-one oxime, HL2 = 3-(2-amino-propylimino)butan-2-one oxime] and H2L3 = 3-[2-(3-hydroxy-1-methyl-but-2-enylideneamino)-1-methyl-ethylimino]-butan-2-one oxime. All the complexes have been characterized by elemental analyses, spectral studies and room temperature magnetic moment measurements. The molecular structures of all three compounds were elucidated on the basis of X-ray crystallography; complexes 1 and 2 are seen to be the mer isomers.  相似文献   

15.
Two new complexes, [Ni(HL1)(N3)(μ1,1N3)]2 (1) [HL1: NC5H4CH3C=NNH (C=O) NH2] and [Ni(L2)N3] (2) [HL2: NC5H4HC=N NH(C=S)NH2], have been synthesized by reaction of Ni(OAC)2·4H2O and sodium azide with HL1 and HL2 and characterized by elemental analysis, FT-IR, and UV–vis spectral studies. Single-crystal X-ray diffraction reveals that 1 is dinuclear with nickel(II) in an octahedral environment of NNO donors of HL1, two nitrogens of azide bridges and one nitrogen of terminal azide; 2 is mononuclear containing nickel(II) in a distorted square-planar environment of NNS donors of HL2 and one terminal azide. The structures of 1 and 2 have been optimized by density functional theory. The results of antimicrobial activities of ligands, 1 and 2 demonstrated that HL2 and 2 have good antimicrobial activity in contrast with HL1 and 1, related to the presence of sulfur donor in HL2.  相似文献   

16.
Preparations, crystal structures, electronic and CD spectra are reported for new chiral Schiff base complexes, bis(N-R-1-naphthylethyl-3,5-dichlorosalicydenaminato)nickel(II), copper(II), and zinc(II). Nickel(II) and copper(II) complexes adopt a square planar trans-[MN2O2] coordination geometry with Δ(R,R) configuration. While zinc(II) complex adopts a compressed tetrahedral trans-[MN2O2] one with Δ(R,R) configuration and exhibits an emission band around 21 000 cm−1 (λex = 27 000 cm−1). Absorption and CD spectra were recorded in N,N′-dimethylformamide, acetone, methanol, chloroform, and toluene solutions to discuss relationships between spectral shifts of d–d and π–π bands by structural changes of the complexes and physical properties of the solvents. Moreover, we have attempted to investigate conformational changes of the complexes induced by photoisomerization of azobenzene, 4-hydroxyazobenzene, or 4-aminoazobenzene, in various solutions under different conditions. Weak intermolecular interactions between complexes and azobenzenes are important for the phenomenon by conformational changes of bulky π-conjugated moieties of the ligands.  相似文献   

17.
18.
The Schiff base ligands, 2-hydroxy-N-cyclohexyl-l-naphthaldimine (I), and 3-hydroxy-N-cyclohexyl-2-naphthaldimine (II), and their corresponding CuII complexes (1–2) respectively were synthesized and characterized. The crystal and molecular structures of bis-{(cyclohexyl)[(2-oxo-1H-naphth-1-ylidene)-methyl]aminato}copper(II) (1) and bis-{(cyclohexyl)[(3-oxo-2H-naphth-2-ylidene)-methyl]aminato} copper(II) (2), were determined. The X-ray diffraction study shows that the geometry around the metal atom for (1), is stepped square planar with a step of 1.063 Å while for (2), the geometry around the metal atom for square planar with an angle between the coordination planes O(1)---Cu---N(1) and O(1a)---Cu---N(1a) of 39.9°. Electrochemical studies show a dependence of the CuII/CuI potentials on the ligand structure.  相似文献   

19.
Schiff-base complexes of cobalt(II), nickel(II), copper(II) and, zinc(II) with 3-ethoxysalicyliden-p-aminoacetophenoneoxime (HL) were prepared and characterized on the basis of elemental analyses, IR, 1H- and 13C-NMR, electronic spectra, magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses (TGA). A tetrahedral geometry has been assigned to the complexes.  相似文献   

20.
An interesting series of nine new copper(II) complexes [Cu2L2(OAc)2]·H2O (1), [CuLNCS]·½H2O (2), [CuLNO3]·½H2O (3), [Cu(HL)Cl2]·H2O (4), [Cu2(HL)2(SO4)2]·4H2O (5), [CuLClO4]·½H2O (6), [CuLBr]·2H2O (7), [CuL2]·H2O (8) and [CuLN3]·CH3OH (9) of 2-benzoylpyridine-N(4)-phenyl semicarbazone (HL) have been synthesized and physico-chemically characterized. The tridentate character of the semicarbazone is inferred from IR spectra. Based on the EPR studies, spin Hamiltonian and bonding parameters have been calculated. The g values, calculated for all the complexes in frozen DMF, indicate the presence of the unpaired electron in the dx2-y2 orbital. The structure of the compound, [Cu2L2(OAc)2] (1a) has been resolved using single crystal X-ray diffraction studies. The crystal structure revealed monoclinic space group P21/n. The coordination geometry about the copper(II) in 1a is distorted square pyramidal with one pyridine nitrogen atom, the imino nitrogen, enolate oxygen and acetate oxygen in the basal plane, an acetate oxygen form adjacent moiety occupies the apical position, serving as a bridge to form a centrosymmetric dimeric structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号