首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The reaction of copper(II) hydroxocarbonate, mandelic acid (H2MANO) and 2,2′-bipyridine (bpy) or 1,10-phenanthroline (phen) in water affords [Cu(bpy)(μ2-MANO)]2 · 8H2O (1), [Cu(bpy)(MANO)] · 4H2O (2) and the opened tetranuclear hydroxo-bridged copper(II) complexes of formulae [Cu43-OH)22-MANO)2(bpy)4](phglyo)2 · 8H2O (3) (phglyo = phenylglyoxylate) or [Cu43-OH)22-OH)2(OH2)2(phen)4](Bza)2(OH)2 · 5H2O (4) (Bza = benzoate), respectively. The compounds have been characterized by spectroscopic techniques and studied by single-crystal X-ray diffractometry. The formation of 3 and 4 takes place in basic media through dehydrogenation or oxidative dehydrogenation followed by in situ oxidative decarboxylation of mandelic acid to phenylglyoxylate or benzoate, respectively. These results indicate that cooperative catalysis of diimine ancillary ligands and copper(II) is essential.  相似文献   

2.
μ-1,3-Acetamide or acetate bridged, symmetric and asymmetric dicopper(II) complexes viz [Cu2(P1-O)(NHAc)](ClO4)2 (1), [Cu2(P2-O)(OAc)](ClO4)2 (2) and [Cu2(P2′-O)(OAc)(H2O)](ClO4)2 (3) were synthesized by employing classic dinucleating ligands; P1-OH, P2-OH (symmetric), and P2′-OH (asymmetric) having trivial differences in their ligand frame work. Solid state structures of these complexes were determined by X-ray crystallography. In solution, they were also characterized by various spectroscopic techniques, which includes ESI-MS, FT-IR, optical, solution magnetic moment, paramagnetic 1H NMR and EPR. The solution magnetic moment of these complexes at room temperature suggests a weak magnetic interaction between the two Cu(II) centers.  相似文献   

3.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

4.
Novel copper(II) complexes, molecular [Cu66-Cl)(μ3-OH)2(μ-L)6Cl9(H2O)3] · 3H2O (1) and polymeric [Cu(μ-L)(μ-OH)(H2O)2]Cl (2) (L = 4-(4-hydroxyphenyl)-1,2,4-triazole), have been prepared and characterized by X-ray structural analysis. Compound 1 appears to be an unusual example of a chloride ion with six equal Cu–Cl distances of 2.8397(3) Å. It has also been characterized by X-ray powder diffraction and magnetic measurements. Both complexes have distorted octahedral configurations of copper ions; the coordination cores are CuN2Cl2O2 or CuN2Cl3O (1) and CuN2O4 (2).  相似文献   

5.
Five new copper(I)/silver(I) complexes containing 2-aminopyridine, [Cu(μ-Cl)(2-Apy)(PPh3)]2(1), [Ag(μ-Cl)(2-Apy)(PPh3)]2(2), [Ag(μ-Br)(2-Apy)PPh3)]2(3), [Ag(μ-ONO2)(2-Apy)(PPh3)]2(4), [Ag(μ-ONO2)(2-Apy)(AsPh3)]2(5) have been synthesised for the first time. Complexes 15 are obtained by the reactions of MX (MX = CuCl for 1; M = Ag for 2–5; X = Cl, Br for 23; X = NO3 for 4–5) with the monodentate ligands EPh3 (E = P for 14; E = As for 5) and 2-Apy in the molar ratio of 1:1:2 in the mixed solvent of CH2Cl2 and MeOH. Complexes 15 are characterised by IR and X-ray diffraction. In 15, chloride, bromide and nitrate ions bridge two metal atoms to form dinuclear complexes containing the parallelogram cores M2X2 (M = Cu, Ag).  相似文献   

6.
Reactions of [PtMe3(OCMe2)3](BF4) and [(PtMe3I)4] with pyrazole (pzH) afforded mononuclear pyrazole platinum(IV) complexes [PtMe3(pzH)3](BF4) (1) and [PtMe3I(pzH)2] (2), respectively. The formation of dinuclear pyrazolato bridged platinum(IV) complexes (PPN)[(PtMe3)2(μ-pz)3] (3), (PPN)[(PtMe3)2(μ-I)(μ-pz)2] · 1/2Et2O (4) and [K(18C6)][(PtMe3)2(μ-I)(μ-pz)2] (5) was achieved by the reaction of each 1 and 2 with [PtMe3(OCMe2)3](BF4) in the presence of KOAc followed by reaction with (PPN)Cl (PPN+ = bis(triphenylphosphine)iminium cation) and 18C6, respectively. The reaction of complex 4 with AgO2CCF3 followed by addition of RSR′ (R/R′ = Me/Me, Me/Ph) resulted in the formation of complexes [(PtMe3)2(μ-pz)2(μ-RSR′)] (R/R′ = Me/Me, 6; Me/Ph, 7). All complexes were characterized unambiguously by microanalysis and NMR (1H, 13C) spectroscopic investigations. Additionally, crystal structures of complexes 3 and 4 as well as DFT calculation are presented. Furthermore, in vitro studies on the anti-proliferative activity of complexes 2 and 5 were carried out.  相似文献   

7.
The treatment of the complex [Ir(η2-C2H4)2(L)][PF6] (L = κ3-N,N,N-(S,S)-iPr-pybox) with acetic acid (1:1 molar ratio) at −10 °C affords the complex [Ir(C2H5)(κ2-O,O-O2CCH3)(L)][PF6] (1). The dinuclear iridium(III) complex [Ir2(μ-Cl)2(C2H5)2(L)2][PF6]2 (2) is stereoselectively obtained by spontaneous intramolecular insertion of ethylene into the iridium-hydride bond of the mononuclear complex [IrClH(η2-C2H4)(L)][PF6]. The single bridging chloride dinuclear derivative [Ir2(μ-Cl)(C2H5)2Cl2(L)2][PF6] (3) is prepared by reaction of 2 with one equivalent of NaCl. The intramolecular insertion reaction of methyl and ethyl propiolate into the Ir-H bond of the complex [IrClH(MeCN)(L)][PF6] gives stereoselectively the dinuclear complexes [Ir2(μ-Cl)2(HCCHCO2R)2(L)2][PF6]2 (R = Me (4), Et (5)). The reaction of the complexes 4, 5 with one equivalent of NaCl or with an excess of sodium acetate yields the dinuclear [Ir2(μ-Cl)(HCCHCO2R)2Cl2(L)2][PF6] (R = Me (6), Et (7)) or the mononuclear [IrCl(HCCHCO2Et)(κ1-O-O2CMe)(L)] (8) complexes, respectively. The structure of the dinuclear complex 3 · CH2Cl2 has been determined by an X-ray monocrystal study.  相似文献   

8.
The synthesis of lanthanide hydroxo complexes stabilized by a carbon-bridged bis(phenolate) ligand 2,2’-methylene-bis(6-tert-butyl-4-methylphenoxo) (MBMP2−) was described, and their reactivity toward phenyl isocyanate was explored. Reactions of (MBMP)Ln(C5H5)(THF)2 with a molar equiv. of water in THF at −78 °C afforded the bis(phenolate) lanthanide hydroxides as dimers [{(MBMP)Ln(μ-OH)(THF)2}2] [Ln = Nd (1), Yb (2)] in high yields. Complexes 1 and 2 reacted with phenyl isocyanate in THF, after workup, to give the desired O−H addition products, [(MBMP)Ln(μ-η12-O2CNHPh)(THF)2]2 [Ln = Nd (3), Yb (4)] in excellent isolated yields. These complexes were well characterized, and the molecular structures of complexes 2 to 4 were determined by X-ray crystallography. The ytterbium atom in complex 2 is coordinated to six oxygen atoms to form a distorted octahedral geometry, whereas each metal center in complexes 3 and 4 is seven-coordinated, and the coordination geometry can be best described as a distorted pentagonal bipyramid.  相似文献   

9.
Two mononuclear and one dinuclear copper(II) complexes, containing neutral tetradentate NSSN type ligands, of formulation [CuII(L1)Cl]ClO4 (1), [CuII(L2)Cl]ClO4 (2) and [CuII2(L3)2Cl2](ClO4)2 (3) were synthesized and isolated in pure form [where L1 = 1,2-bis(2-pyridylmethylthio)ethane, L2 = 1,3-bis(2-pyridylmethylthio)propane and L3 = 1,4-bis(2-pyridylmethylthio)butane]. All these green colored copper(II) complexes were characterized by physicochemical and spectroscopic methods. The dinuclear copper(II) complex 3 changed to a colorless dinuclear copper(I) species of formula [CuI2(L3)2](ClO4)2,0.5H2O (4) in dimethylformamide even in the presence of air at ambient temperature, while complexes 1 and 2 showed no change under similar conditions. The solid-state structures of complexes 1, 2 and 4 were established by X-ray crystallography. The geometry about the copper in complexes 1 and 2 is trigonal bipyramidal whereas the coordination environment about the copper(I) in dinuclear complex 4 is distorted tetrahedral.  相似文献   

10.
Three new dinuclear copper(II) compounds: [Cu2(dpyam)21,1-N3)2(O2CH)2] (1), [Cu2(dpyam)21,1-N3)2(O2CCH3)2] (2) and [Cu2(dpyam)21,1-N3)2(O2CCH2CH3)2] (3) have been synthesized and characterized crystallographically and spectroscopically. Compounds 1, 2 and 3 consist of a dinuclear unit in which both Cu(II) ions are connected through two end-on azido bridges providing a distorted square pyramidal geometry with a CuN4O chromophore. The Cu?Cu separations are 3.195, 3.200 and 3.247 Å for compounds 1, 2 and 3, respectively. The magnetic properties have been measured in the range from 5 to 300 K and correlated with the molecular structures. All three compounds show a medium to weak ferromagnetic exchange interactions between the Cu(II) ions dominated by the bridging azido ligands, with a singlet-triplet splitting (J) of 63.3, 63.8 and 5.1 cm−1, for compounds 1, 2 and 3, respectively. A large zero-field splitting of about 0.4 cm−1 is observed in the EPR for compounds 1 and 2.  相似文献   

11.
In the treatment of cyclometallated dimer [Pd(dmba)(μ-Cl)]2 (dmba = N,N-dimethylbenzylamine) with AgNO3 and acetonitrile the result was the monomeric cationic precursor [Pd(dmba)(NCMe)2](NO3) (NCMe = acetonitrile) (1). Compound 1 reacted with m-nitroaniline (m-NAN) and pirazine (pz), originating [Pd(dmba)(ONO2)(m-NAN)] (2) and [{Pd(dmba)(ONO2)}2(μ-pz)] · H2O (3), respectively. These compounds were characterized by elemental analysis, IR and NMR spectroscopy. The IR spectra of (23) display typical bands of monodentade O-bonded nitrate groups, whereas the NMR data of 3 are consistent with the presence of bridging pyrazine ligands. The structure of compound 3 was determined by X-ray diffraction analysis. This packing consists of a supramolecular chain formed by hydrogen bonding between the water molecule and nitrato ligands of two consecutive [Pd2(dmba)2(ONO2)2(μ-pz)] units.  相似文献   

12.
The synthetic investigation of the CuII/maleamate(−1) ion (HL)/N,N′,N′′-chelate general reaction system has allowed access to compounds [Cu2(HL)2(bppy)2](ClO4)2·H2O (1·H2O), [Cu(HL)(bppy)(ClO4)] (2) and [Cu(HL)(terpy)(H2O)](ClO4) (4) (bppy = 2,6-bis(pyrazol-1-yl)pyridine, terpy = 2,2′;6′,2′′-terpyridine). In the absence of externally added hydroxides, compound [Cu2(L′)2(bppy)2](ClO4)2 (3) was obtained from MeOH solutions; L′ is the monomethyl maleate(−1) ligand which is formed in situ via the CuII-assisted HL → L′ transformation. In the case of tptz-containing (tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine) reaction systems, the CuII-assisted hydrolysis of tptz to pyridine-2-carboxamide (L1) afforded complex [Cu(L1)2(NO3)2] (5). The crystal structures of 15 are stabilized by intermolecular hydrogen bonding and π–π stacking interactions. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

13.
One novel triply-bridged dicopper(II) complex formulated as [Cu2(dpa)2(μ-Cl)(μ-OH)(μ-HCOO)]·(ClO4) 1 and two terephthalate anions bridged 2,2′-bipyridine (2,2′-bpy) dicopper(II) complexes with formulae of [Cu2(2,2′-bpy)4(μ-terephthalate)]·(NO3)22 and [Cu2(2,2′-bpy)4(μ-terephthalate)]·(terephthalate) 3, respectively, have been synthesized and characterized by infrared and electrospray mass spectra as well as X-ray single-crystal determination. In addition, thermal properties of all compounds have been studied.  相似文献   

14.
Self assembly of N-salicylidene 2-aminopyridine (L1H) with Cu(NO3)2·3H2O affords [Cu4(L1)4(NO3)3(CH3OH)][Cu(L1)(NO3)2](2-aminopyridinium)(NO3)·5CH3OH (1) which is composed of an asymmetric [2 × 2] grid-like cationic complex that co-crystallizes with a Cu(II) mononuclear anion. This remarkable tetranuclear unit presents three penta-coordinated and one hexa-coordinated Cu(II) sites. This quadruple helicate structure reveals strong anti-ferromagnetic coupling (J = −340(2) cm−1) between Cu(II) ions through a double alkoxo bridge. Reacting L1H with Cu(NO3)2·3H2O in slightly different conditions affords however a more symmetric tetranuclear grid-like complex: [Cu4(L1)4(NO3)2(OH)2](2-aminopyridinium)(OH)·CH3OH) (2). A dinuclear Ni(II) complex, [Ni2(L2)2(L2H)2(NCS)2(CH3OH)2]·2CH3OH (3), obtained with another related donor ligand (L2H N-salicylidene 3-aminomethylpyridine) was also prepared.  相似文献   

15.
16.
Alkyl-carbonyl-iridium [Ir(CH3)(CO)(η2-O2CR′)(PPh3)2]+ (1, R′ = CH3, Ph, p-C6H4CH3) react with alkynes (RCCH; R = Ph, p-C6H4CH3) in the presence of NEt3 to give acyl-alkynyl-iridium Ir(C(O)CH3)(-CCR)(η2-O2CR′)(PPh3)2 (4) which further react with RCCH to give alkyl-carbonyl-cis-bis(alkynyl) iridium Ir(CH3)(CO)(CCR)2(PPh3)2 (5). cis-Bis(alkenyl)iridium complexes, Ir(-CHCH2)22-O2CCH3)(PPh3)2 (6) and (η2-O2CCH3)(PPh3)2 (7) react with substituted alkynes RCCH (R = Ph, p-C6H4CH3, cyclohex-1-enyl) to give cis-bis(alkynyl) Ir(CCR)22-O2CCH3)(PPh3)2 (9) that further react with RCCH to undergo the alkyne insertion reaction into the Ir-O bond to produce iridacycles containing vinyl acetate ligands, (-CCR)2(PPh3)2 (8).  相似文献   

17.
The preparation, crystal structures and spectroscopic characterization of four oxalate copper(II) complexes containing the 4,4′-dimethyl-2,2′-bipyridine (Mebpy) or di(2-pyridyl)sulfide (DPS) nitrogen ligands namely [μ-(ox){Cu(Mebpy)(NO3)(H2O)}2] (1), [μ-(ox){Cu(Mebpy)(ClO4)(H2O)}2] (2), [μ-(ox){Cu(DPS)(H2O)}2](ClO4)2 (3) and [Cu(DPS)(ox)(H2O)] · 2H2O (4) are described. X-ray diffraction measurements have shown that complexes 13 are binuclear, in which the oxalate anion bridges two Cu(II) centers, while the complex (4) is mononuclear and the oxalate anion adopts the terminal bidentate chelating coordination mode. In 1 and 2 the Cu(II) sites display a distorted octahedral geometry (4+2 environment) and in compounds 3 and 4 the Cu(II) centers exhibit a slightly distorted square pyramidal geometry. In addition, complexes 1 and 2 present a 2D supramolecular arrangement through hydrogen bonds between coordination water molecules and nitrate or perchlorate anions and π-stacking interaction between the pyridyl rings of Mebpy nitrogen ligands.  相似文献   

18.
The cluster [Ru332-HNNMe2)(μ-κ2-PhCHCPh)(μ-CO)2(CO)6], which has a face-capping 1,1-dimethylhydrazido and an edge-bridging 1,2-diphenylethenyl ligand, reacts with diphenylbutadiyne or 2,4-hexadiyne to give the isomeric triruthenium carbonyl cluster complexes [Ru332-HNNMe2)(μ-κ2-PhCHCPh){μ34-RCCCC(R)C(R)CCCR}(CO)6] (3a, R = Ph; 3b, R = Me) and [Ru332-HNNMe2)(μ-κ2-PhCHCPh){μ34-RCCCC(R)C(CCR)CR}(CO)6] (4a, R = Ph; 4b, R = Me). These compounds contain a large unsaturated hydrocarbyl ligand that arises from a metal-cluster-mediated head-to-head (3) or head-to-tail (4) coupling of two diyne molecules and maintain the original hydrazido and ethenyl ligands. Metal clusters that contain a face-capping diyne coordinated through only one alkyne fragment, such as [Ru332-HNNMe2)(μ-κ2-PhCHCPh)(μ32-RCCCCR)(CO)7], have also been isolated (2a, R = Ph; 2b, R = Me). They are the intermediates that incorporate a second diyne reagent to give 3 and 4. The structural parameters of intermediate 2b have been obtained from DFT calculations.  相似文献   

19.
We have designed and synthesized three new metal-1,1′-ferrocenedicarboxylate complexes containing tetrametallic macrocyclic building units, namely, [Cd22-O2CFcCO22)2(phen)2(H2O)2] · 4CH3OH (1) (Fc = (η5-C5H4)Fe(C5H45), phen = 1,10-phenanthroline), {[Cd(η2-O2CFcCO2)(pebbm)(H2O)] · 2H2O}n (2) (pebbm = 1,1′-(1,5-pentanediyl)bis-1H-benzimidazole) and {[Cd(η2-O2CFcCO22)(prbbm)(H2O)] · 3H2O}n (3) (prbbm = 1,1′-(1,3-propanediyl)bis-1H-benzimidazole). Compound 1 is a 0-D discrete tetrametallic macrocyclic framework. Compound 2 features an infinite 1-D ribbon of rings structure constructed by the subsidiary ligands pebbm connecting tetrametallic macrocyclic building units. For 3, its tetrametallic macrocyclic building units are linked by the subsidiary ligands prbbm to form a 2-D network structure. The structural features of these complexes indicate that the ferrocenedicarboxylate tetrametallic macrocycle can be used as a successful molecular building unit and the shapes and conformational flexibility of subsidiary ligands play a crucial role in the manipulation of the configuration of the resultant MOFs. Their fluorescence spectra in solid state at room temperature suggest that the fluorescence emissions of 1-3 are ruled by 1,1′-ferrocenedicarboxylate ligand.  相似文献   

20.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号