首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
The equilibria of the complexation processes of V3+ ion with l-phenylalanine, l-tyrosine, l-tryptophan and l-proline in aqueous solution were studied by potentiometric and spectroscopic (UV, Vis, CD) methods. The results indicate that all ligands (except l-tyrosine) form only 1:1 species with vanadium(III) ion in the pH range about 2–5. More complex equilibria were observed in the vanadium(III)–l-tyrosine system. Only in this system relatively stable ML2 species predominantly exists in the pH range 3–5. The results of spectroscopic measurements indicate that in ML and ML2 species chelated bounds through O and N atoms appear in all investigated systems. Above pH 5 strong hydrolysis processes of vanadium(III) occurred.  相似文献   

2.
Depending on the reagent ratio, 5-dimethylaminomethyl-4-imidazole-4-carboxylic acid and 2,4,5-tris(dimethylaminomethyl)imidazole were obtained in the aminomethylation of imidazole-4-carboxylic and imidazole-4,5-dicarboxylic acids. The oxidation of these compounds with nitric acid leads to imidazole-4,5-dicarboxylic acid.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 206–208, February, 1989.  相似文献   

3.
Luminescence quenching of a novel long lived Eu(III)–pyridine-2,6-dicarboxylic acid probe of 1:2 stoichiometric ratio has been studied in 0.10 volume fraction ethanol–water mixture at pH 7.5 (HEPES buffer) in the presence of the organophosphorus pesticides chlorfenvinphos (P1), malathion (P2), azinphos (P3), and paraxon ethyl (P4). The luminescence intensity of Eu(III)–(PDCA)2 probe decreases as the concentration of the pesticide increases. It was observed that the quenching due to P3 and P4 proceeds via both diffusional and static quenching processes. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching of Eu(III)–pyridine-2,6-dicarboxylic acid probe in solution. The linear range for determination of the selected pesticides is 1.0–35.0 μM. The detection limits were 0.24–0.55 μM for P3, P4, and P1 and 2.5 μM for P2, respectively. The binding constants (K), and thermodynamic parameters of the OPs with Eu(III)–(PDCA)2 were evaluated. Positive and negative values of entropy (ΔS) and enthalpy (ΔH) changes for Eu(III)–(PDCA)2–P1 ternary complex were calculated. As the waters in this study do not contain the above mentioned OPs over the limit detectable by the method, a recovery study was carried out after the addition of the adequate amounts of the organophosphorus pesticides under investigation.  相似文献   

4.
Coordination polymers [Na(Hidc)(H2idc)(H2O)2] (1) and [Na(Hidc)(H2O)] (2) (H2idc?=?imidazole-4,5-dicarboxylic acid) have been synthesized hydrothermally and analyzed by single-crystal X-ray diffraction analysis, TGA, and IR. Compound 1 displays a 1-D coordination network and 2 exhibits a layered coordination structure. Both compounds form 3-D frameworks through hydrogen bonds.  相似文献   

5.
A convenient general method for the synthesis of unsymmetrical imidazole-4,5-dicarboxylic acid derivatives is described. The key intermediates are 5,10-dioxo-5H,10H-diimidazo[1,5-a:1′,5′-d[pyrazine-1,6-dicarboxylic acid, -1,6-dicarboxylic ester and -1,6-dicarboxamide.  相似文献   

6.
This paper represents the hydrothermal synthesis of new isomorphous lanthanide–vanadium complexes with one-dimensional coordination polymers: [Pr2(VO2)2(dipic)4(H2O)9] · nH2O with dipic = pyridine-2,6-dicarboxylic acid and n = 7.75. The structure determination shows a unique one-dimensional structure in which three types of chains run along the c-axis: the chain of positively charged praseodymium complexes bridged by a dipic ligand ([Pr(dipic)(H2O)5]+), the chain of negatively charged, stacked vanadium complexes ([VO2(dipic)]), and the chain of neutral praseodymium complexes with a bridged dipic ligand and a coordinating dipic ligand ([Pr(dipic)[VO2(dipic)](H2O)4]). Such one-dimensional chains provide open channels which can accommodate water molecules. Not only accommodated water molecules but also ones coordinated to praseodymium ions were easily removed and absorbed upon heating at 200 °C and exposure of humidity at room temperature, respectively.  相似文献   

7.
The magnetic interactions in a new series of isostructural imino nitroxide radical lanthanide(III) complexes, [Ln(hfac)3(IM2py)] (Ln = Gd–Yb: IM2py = 2-(2′-pyridyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazoline-1-oxy; hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), are examined by considering the intrinsic paramagnetic contribution of the Ln(III) ion from the corresponding [Ln(hfac)3(pybzim)] with a diamagnetic pybzim(2-(2-pyridyl)benzimidazole) ligand; the Ln(III)–IM2py interaction being antiferromagnetic for the 4f7 to 4f13 Ln(III) complexes and negligibly small for the other complexes. This series is the first example reverse to the previous cases for the series of Ln–Cu or Ln–aminoxyl(NIT) radical (4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazoline-3-oxide-1-oxy) complexes, other than only a few examples of semiquinone Ln complexes. This reverse nature of the magnetic interaction, as compared with the NIT complexes, validates the empirical approach by O. Kahn et al. [Inorg. Chem. 38 (1999) 3692; J. Am. Chem. Soc. 122 (2000) 3413] in the spin-coupled systems for a series of Ln(III) complexes.  相似文献   

8.
以酒石酸为原料,经成环制酸、酯化、肼解、与芳香醛缩合,制备了7个4,5-咪唑双酰腙,并用元素分析,IR,^1H NMR,^13C NMR对它们的结构进行了表征。实验结果表明,酰肼与芳香醛在冰醋酸中进行缩合酰腙化一步,具有反应快速、产率高、条件温和、操作简便等优点。  相似文献   

9.
Abstract

Anhydrous vanadium trichloride reacts with azoles in low concentrated ethyl alcohol solution of V(III) to produce 1:1 electrolytic complexes of the type [V (azole)4Cl2]+. Studies of the visible spectra of all the above complexes demonstrate that the vanadium(III) is octahedrally co-ordinated. The room temperature magnetic moments of the complexes (~ 2.8 B.M.) are consistant with the presence of two unpaired electrons per vanadium atom. At higher concn. of V(III) the polynuclear violet-red complexes probably are formed.  相似文献   

10.
Theoretical and Experimental Chemistry - It was established that unsubstituted amides of imidazole-4,5-dicarboxylic acid are characterized by large (up to 15000 cm–1) Stokes shifts. It was...  相似文献   

11.
In this study we report the stability constants and the speciation of the ternary vanadium(III) complexes with 2,2??-bipyridine (Bipy) and the amino acids histidine (HHis), cysteine (H2Cys), aspartic acid (H2Asp) and glutamic acid (H2Glu) by means of potentiometric titrations employing 3.0 mol?dm?3 KCl as the ionic medium at 25?°C. The potentiometric data were analyzed taking into account the hydrolysis of the vanadium(III) cation and the respective stability constants of the binary complexes and the acid?Cbase reactions of the ligands, which were kept fixed during the analysis. The complexes detected in the different systems are: in the vanadium(III)?CBipy?CHHis system, [V(HBipy)(HHis)]4+ and [V(HBipy)(H2His)]5+; in the vanadium(III)?CBipy?CH2Cys system, [V2O(Bipy)(Cys)]2+; in the vanadium(III)?CBipy?CH2Asp system, [V(Bipy) (Asp)]+, [V2O(Bipy)(Asp)]2+, and V2O(Bipy)2(Asp)2; and finally in the vanadium(III)?CBipy?CH2Glu system, [V(Bipy)(H2Glu)]3+ and [V(Bipy)(Glu)]+. The respective stability constants were determined and the specie distribution diagrams as a function of pH are briefly discussed.  相似文献   

12.
In this work we present results for the speciation of the ternary complexes formed in the aqueous vanadium(III)–dipicolinic acid and the amino acids cysteine (H2cys), histidine (Hhis), aspartic acid (H2asp) and glutamic acid (H2glu) systems (25 °C; 3.0 mol⋅dm−3 KCl as ionic medium), determined by means of potentiometric measurements. The potentiometric data were analyzed with the least-squares program LETAGROP, taking into account the hydrolysis of vanadium(III), the acid-base reactions of the ligands, and the binary complexes formed. Under the experimental conditions (vanadium(III) concentration = 2–3 mmol⋅dm−3 and vanadium(III): dipicolinic acid: amino acid molar ratio 1:1:1, 1:1:2 and 1:2:1), the following species [V(dipic)(H2asp)]+, [V(dipic)(Hasp)], [V(dipic)(asp)], [V(dipic)(asp)(OH)]2−, and [V(dipic)(asp)(OH)2]3− were found in the vanadium(III)–dipicolinic acid–aspartic acid system. In the vanadium(III)–dipicolinic acid–glutamic acid system [V(Hdipic)(H2glu)]2+, [V(dipic)(H2glu)]+, [V(dipic)(Hglu)], [V(dipic)(Hglu)(OH)], and [V(dipic)(Hglu)(OH)2]2− were observed. In the vanadium(III)–dipicolinic acid–cysteine system the complexes [V(dipic)(H2cys)]+, [V(dipic)(Hcys)], [V(dipic)(cys)], and [V(dipic)(cys)(OH)]2− were present. And finally, in the vanadium(III)–dipicolinic acid–histidine system the complexes [V(Hdipic)(Hhis)]2+, [V(dipic) (Hhis)]+[\mathrm{V}(\mathrm{dipic}) (\mathrm{Hhis})]^{+}, [V(dipic)(his)], [V(dipic)(his)(OH)], and [V(dipic)(his)(OH)2]2− were observed. The stability constants of these complexes were determined. The species distribution diagrams as a function of pH are briefly discussed.  相似文献   

13.
Abstract

The preparation and spectroscopic properties of eleven hydrated lanthanide (III) dipicolinate and quinolinate complexes are reported for the first time. The complexes are of three general types: M(dipi)(dipiH)(H2O)4, M(dipiH)3(H2O) and M(quin)(quinH)(H2O)3 [where M =lanthanide (III); dipiH2 =pyridine-2,6-dicarboxylic acid (dipicolinic acid); quinH2 =pyridine-2, 3-dicarboxylic acid (quinolinic acid)], and evidence is presented which indicates that they may be six-coordinate.  相似文献   

14.
In this study, two new Mn(II) complexes consisting of a phenanthroline derivative and organic acid ligands, [Mn(3-PIP)(1,3-bdc)] n (1) and [Mn(3-PIP)2(1,4-bdc)] n (2) (3-PIP?=?2-(3-pyridyl)-imidazo[4,5-f]?1,10-phenanthroline, 1,3-H2bdc?=?benzene-1,3-dicarboxylic acid, 1,4-H2bdc?=?benzene-1,4-dicarboxylic acid), have been synthesized via hydrothermal reaction and characterized by Fourier transform infrared (FT-IR) spectra, elemental analyses, and single-crystal X-ray diffraction. Complex 1 is a one-dimensional (1-D) twisted double chain bridged by 1,3-bdc. The 3-PIP ligands in a parallel fashion are alternately attached to both sides of the 1-D double chain. Complex 2 exhibits a 1-D zigzag chain, to which pairs of crossed 3-PIP ligands are alternately attached. The two complexes are further extended into three-dimensional (3-D) supramolecular structures by hydrogen-bonding and π–π stacking interactions. The N-donor ligands with an extended π-system play a crucial role in formation and stabilization of the final supramolecular frameworks. Thermal properties of 1 and 2 and fluorescence of 2 are investigated in the solid state.  相似文献   

15.
Synthesis, Crystal Structures, and Properties of Lanthanoid(III) Complexes with 7-Oxa-bicyclo[2.2.1]heptane-2,3-dicarboxylic Acid The synthesis of coordination compounds [ML(HL)(H2O)] with M = La3+, Ce3+, Pr3+, Nd3+ and H2L = 7-oxa-bicyclo[2.2.1]heptane-2-exo,3-cis-dicarboxylic acid ( 1 ) has been described. Results of IR spectroscopy and thermal decomposition are given. As a result of X-ray analyses, the four investigated lanthanoid(III) complexes are isotypic. Their stereochemistry approximates to the tri-capped trigonal prism with nine O atoms coordinating the metal atom. The bicyclic ligand acts as a tridentate chelating monoanion HL? as well as a pentadentate dianion L2? with both chelating and bridging function. One coordination place at the metal atom is occupied by a water molecule.  相似文献   

16.
Synthesis and Structures of Vanadium(III) and Vanadium(IV) Silanolates The syntheses of the new and partially known vanadium(III)-silanolate complexes [{V(OSiMet2Bu)3}2(THF)] ( 1 ), [Li(THF)2V(OSiMet2Bu)4] ( 2 ), [V(OSiMet2Bu)(lut)] ( 3 ), V(OSiPh3)3(THF)3 ( 4 ), [Li(THF)4][V(OSiPh3)4](THF)2 ( 5 ), [Li(DME)VMes(OSiMet2Bu)3] ( 7 ), [Li(THF)4][VMes · (OSiPh3)3] ( 8 ), [Li(THF)4][VMes3(OSiMet2Bu)] ( 9 ), and Na[VMes3(OSiPh3)](THF)4 ( 10 ) as well as the vanadium(IV) compounds [V(OSiPh3)4] ( 6 ), [VMes3(OSiMet2Bu)] ( 11 ) and [VMes3(OSiPh3)] ( 12 ) are reported. In most cases the vanadium atom displays a coordination number of four. The dimeric structure of 1 with coordination numbers of four and five, respectively, has been deduced from molecular mass measurements, mass spectrometry and its magnetic properties. The crystal structures of compounds 2 , 4 , 5 , 9 and 11 were resolved. Complex 2 resembles a bridged contact ion pair in which both metal centres are in a tetrahedral coordination environment. In 4 the ligands are arranged trigonal bipyramidally with the THF molecules in the axial positions. Complexes 5 and 9 crystallize in separated ion paires with the vanadium in a tetrahedral coordination sphere. The crystal structure of 11 is analogous to that of 9 but with consequences due to the higher oxidation state. Oxidation of the vanadates(III), e. g. 5 , 9 and 10 , yields the corresponding vanadium(IV) compounds 6 , 11 and 12 .  相似文献   

17.
 A new resin has been synthesized by functionalisation of polystyrene-divinylbenzene (8%) with imidazole 4,5-dicarboxylic acid through –N=N– bonding. The resulting resin has been characterised by elemental analysis, thermogravimetric analysis, infrared spectroscopy, hydrogen ion capacity and metal ion capacity. The speciation study of vanadium has been studied by using this resin and the maximum exchange capacity was found to be 0.45 mmol g−1 for V4+ and that for V5+ was 1.57 mmol g−1 at pH 3 for both. The eluents malonic acid and sodium hydroxide have been used for the selective separation of vanadium(IV) and vanadium(V) species respectively. The effects of diverse ions on the sorption and recovery of each species have been studied. Finally, the developed method has been applied for the speciation and determination of these two species in natural water samples. Correspondence: Department of Chemistry, The University of Burdwan, Burdwan, India. e-mail: akdas100@yahoo.com Received December 20, 2001; accepted October 11, 2002  相似文献   

18.
A new homonuclear and heterodinuclear pyridine-2,6-dicarboxylate complexes, formulated as (enH2)[Cu(dipic)2]·2.5H2O (1) and [Cu(μ-dipic)2Zn(H2O)5]·2H2O (2) (en = ethylenediamine, dipic = pyridine-2,6-dicarboxylate) were synthesized according the reactions between the three species of copper(II) and zinc(II) nitrate, ethylenediamine and pyridine-2,6-dicarboxylic acid. Complexes have been characterized by the methods of elemental, spectroscopic (IR and UV–Vis), thermal (TG/DTG, DTA) analysis, magnetic measurement and single crystal X-ray diffraction. Correlation coefficient, activation energies, E∗; pre-exponential factor, A; entropies, S∗; enthalpies, H∗ and Gibbs free energies, G∗ of the thermal decomposition reactions have been calculated under the derivations from thermogravimetric (TG) and differential thermogravimetric (DTG) curves, using the Coats–Redfern and Horowitz–Metzger methods. Complex 1 belonged to a six-coordinate behavior with a distorted octahedral geometry around Cu(II), that the structure contains two pyridine-2,6-dicarboxylate species as a tridentate ligands and ethylenediaminium cation as a counter ion as well as 2.5 uncoordinated water molecules. On the other hand complex 2 contains six-coordinated Cu(II) and Zn(II) ions, which are linked by two O atoms of the same carboxyl group from dipicolinic acid. The dipicolinate dianions again behave as tridentate ligands in 2. Two uncoordinated water molecules are also present in the structure. The structure units of 1 and 2 are mutually held by the hydrogen bonds and π?π interactions. There is also a C–O?π interaction in 2. The Cu(II) complexes are connected to one another via O–H?O hydrogen bonds, forming water clusters, which play an important role in the stabilization of the crystal structure. In the water clusters, the water molecules are trapped by the cooperative association of coordination interactions as well as hydrogen bonds.  相似文献   

19.
A detailed study of iron (III)–citrate speciation in aqueous solution (θ = 25 °C, Ic = 0.7 mol L−1) was carried out by voltammetric and UV–vis spectrophotometric measurements and the obtained data were used for reconciled characterization of iron (III)–citrate complexes. Four different redox processes were registered in the voltammograms: at 0.1 V (pH = 5.5) which corresponded to the reduction of iron(III)–monocitrate species (Fe:cit = 1:1), at about −0.1 V (pH = 5.5) that was related to the reduction of FeL25−, FeL2H4− and FeL2H23− complexes, at −0.28 V (pH = 5.5) which corresponded to the reduction of polynuclear iron(III)–citrate complex(es), and at −0.4 V (pH = 7.5) which was probably a consequence of Fe(cit)2(OH)x species reduction. Reversible redox process at −0.1 V allowed for the determination of iron(III)–citrate species and their stability constants by analyzing Ep vs. pH and Ep vs. [L4−] dependence. The UV–vis spectra recorded at varied pH revealed four different spectrally active species: FeLH (log β = 25.69), FeL2H23− (log β = 48.06), FeL2H4− (log β = 44.60), and FeL25− (log β = 38.85). The stability constants obtained by spectrophotometry were in agreement with those determined electrochemically. The UV–vis spectra recorded at various citrate concentrations (pH = 2.0) supported the results of spectrophotometric–potentiometric titration.  相似文献   

20.
Pyridoxol and pyridoxal on benzylation with dimethylphenylbenzylammonium hydroxide (“leucotrope”) gave 3-O-benzylpyridoxol (IV) and 3-O-benzylpyridoxal (V), respectively. As a possible mechanism of this reaction an ion pair intermediate has been postulated. Oxidation of IV and V with chromic oxide-pyridine-acetic acid complex gave 3-O-benzyl-4-pyridoxic acid lactone (VI), which could also be obtained by benzylation of 4-pyridoxic acid. Treatment of VI with dimethylamine gave 2-methyl-3-benzyloxy-5-hydroxymethylpyridine-4-N,N-dimethylcarbox-amide (X) which oxidized to form the 5-formyl derivative (XI). The latter on hydrolysis yielded the metabolite, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylic acid (I). When reacted with liquid ammonia, VI gave 3-O-benzyl-4-pyridoxamide (VII) which was then oxidized to give 2-methyl-3-benzyloxypyridine-4,5-dicarboxylic acid cyclicimide(IX). Acid hydrolysis of IX gave another metabolite, 2-methyl-3-hydroxypyridine-4,5-dicarboxylic acid (XIII), which could also be obtained by oxidizing XI with potassium permanganate in water to yield 2-methyl-3-benzyloxy-5-carboxypyridine-4-N,N-dimethylcarboxamide (XII) and subsequent hydrolysis with hydrochloric acid. A positional isomer of I, 2-methyl-3-hydroxy-4-formylpyridine-5-carboxylic acid (XVII) was synthesized starting from 3-O-benzyl-5-pyridoxic acid lactone (XIV) following similar reaction sequences used for the preparation of I. Ring-chain tautomerism has been studied in I, XVII, opianic acid (XVIII), phthalaldehydic acid (XIX) and (2-carboxy-4,5-dimethoxy)-phenylacetaldehyde (XX) in different solvents by nmr and in the solid state by ir spectroscopy. A direct and reliable differentiation between the open form (aldehyde proton in low field) and the ring form (lactol proton in the intermediate field) has been obtained by nmr spectroscopy. In sodium deuteroxide and pyridine-d5 the open chain form existed exclusively (except for homolog (XX) which is in cyclic form in pyridine-d5), whereas in 18% hydrogen chloride in deuterium oxide all the compounds are completely in the cyclic form. In hexafluoroacetone hydrate-d2, XVIII, XIX, and XX exist in the cyclic form whereas I is in the open form. In DMS0-d6 both cyclic and open-chain forms have been observed in XVIII, XIX and XX. Definite peak assignment for the two forms could not be made in I due to broadening or superimposition with C6-H. The metabolite I, isometabolite (XVII) and opianic acid (XVIII) form cyclic acetyl derivatives which give a sharp lactol peak. In the solid state XVIII, XIX are in the cyclic form and I and XX in the open-chain form as observed by ir spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号