首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
A new series of binuclear unsymmetrical compartmental oxime complexes (15) [M2L] [M=Cu(II), Ni(II)] have been synthesized using mononuclear complex [ML] (L=1,4-bis[2-hydroxy-3-(formyl)-5-methylbenzyl]piperazine), hydroxylamine hydrochloride and triethylamine. In this system there are two different compartments, one has piperazinyl nitrogens and phenolic oxygens and the other compartment has two oxime nitrogens and phenolic oxygens as coordinating sites. The complexes were characterized by elemental and spectral analysis. Electrochemical studies of the complexes show two step single electron quasi-reversible redox processes at cathodic potential region. For copper complexes E1 pc=−0.18 to −0.62 and E2 pc=−1.18 to −1.25 V, for nickel complexes E1 pc=−0.40 to −0.63 and E2 pc=−1.08 to −1.10 V and reduction potentials are sensitive towards the chemical environment around the copper and nickel atoms. The nickel(II) complexes undergo two electrons oxidation. The first one electron oxidation is observed around +0.75 V and the second around +1.13 V. ESR Spectra of the binuclear copper(II) complexes [Cu2L](ClO4), [Cu2L(Cl)], [Cu2L(NO3)] shows a broad signal at g=2.1 indicating the presence of coupling between the two copper centers. Copper(II) complexes show a magnetic moment value of μeff around 1.59 B.M at 298 K and variable temperature magnetic measurements show a −2J value of 172 cm−1 indicating presence of antiferromagnetic exchange interaction between copper(II) centres.  相似文献   

2.
Cu (II) complexes with 3,5-di(tert-butyl)-1,2-benzenediol (I), 4,6-di(tert-butyl)-1,2,3-benzentriol (II) and sulfur-containing sterically hindered o-diphenol derivatives such as 4,6-di(tert-butyl)-3-(2-hydroxyethylsulfanyl)-1,2-benzenediol (III) and 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfanyl]acetic acid (IV) have been synthesized and characterized by means of elemental analysis, TG/DTA, FT-IR, ESR, XPS, XPD and conductivity measurements. Antifungal activities of these ligands and their respective Cu (II) complexes have been determined against Aspergillus niger, Fusarium sp., Penicillium lividum, Mucor sp. and Botrytis cinerea. Most of the compounds (both the free ligands and the complexes) exert pronounced antifungal activities (RI  70%), and virtually all of them (apart from the Cu(LII)2 complex) have the highest inhibitory properties (RI = 100%) against B. cinerea.  相似文献   

3.
4.
Two new potentially octadentate N2O6 Schiff-base ligands 2-((E)-(2-(2-(2-((E)-2-hydroxy-3-methoxybenzylideneamino)phenoxy)phenoxy)phenylimino)methyl)-6-methoxyphenol H2L1 and 2-((E)-(2-(2-(2-((E)-2-hydroxy-3-methoxybenzylideneamino)phenoxy)-4-tert-butylphenoxy)phenylimino)methyl)-6-methoxyphenol H2L2 were prepared from the reaction of O-Vaniline with 1,2-bis(2′-aminophenoxy)benzene or 1,2-bis(2′-aminophenoxy)-4-t-butylbenzene, respectively. Reactions of H2L1 and H2L2 with copper(II) and zinc(II) salts in methanol in the presence of N(Et)3 gave neutral [CuL1]?·?0.5CH2Cl2, [CuL2], [ZnL1]?·?0.5CH2Cl2, and [ZnL2] complexes. The complexes were characterized by IR spectra, elemental analysis, magnetic susceptibility, ESI–MS spectra, molar conductance (Λm), UV-Vis spectra and, in the case of [ZnL1]?·?0.5CH2Cl2 and [ZnL2], with 1H- and 13C-NMR. The crystal structure of [ZnL1]?·?0.5CH2Cl2 has also been determined showing the metal ion in a highly distorted trigonal bipyramidal geometry. The electrochemical behavior of H2L2 and its Cu(II) complex, [CuL2], was studied and the formation constant of [CuL2] was evaluated using cyclic voltammetry. The logarithm value of formation constant of [CuL2] is 21.9.  相似文献   

5.
Mononuclear copper(II) complexes of a family of pyridylmethylamide ligands HL, HLMe, HLPh, HLMe3 and HLPh3, [HL = N-(2-pyridylmethyl)acetamide; HLMe = N-(2-pyridylmethyl)propionamide; HLPh = 2-phenyl-N-(2-pyridylmethyl)acetamide; HLMe3 = 2,2-dimethyl-N-(2-pyridylmethyl)propionamide; HLPh3 = 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide], were synthesized and characterized. The reaction of copper(II) salts with the pyridylmethylamide ligands yields complexes [Cu(HL)2(OTf)2] (1), [Cu(HLMe)2](ClO4)2 (2), [Cu(HL)2Cl]2[CuCl4] (3), [Cu(HLMe3)2(THF)](OTf)2 (4), [Cu(HLMe3)2(H2O)](ClO4)2 (5a and 5b), [Cu(HLPh3)2(H2O)](ClO4)2 (6), [Cu(HL)(2,2′-bipy)(H2O)](ClO4)2 (7), and [Cu(HLPh)(2,2′-bipy)(H2O)](ClO4)2 (8). All complexes were fully characterized, and the X-ray structures vary from four-coordinate square-planar, to five-coordinate square-pyramidal or trigonal-bipyramidal. The neutral ligands coordinate via the pyridyl N atom and carbonyl O atom in a bidentate fashion. The spectroscopic properties are typical of mononuclear copper(II) species with similar ligand sets, and are consistent their X-ray structures.  相似文献   

6.
Tris(4-imidazolyl)carbinol, which has close coordination environment to the active site of metalloenzymes, has not been utilized as a biomimetic ligand because of its instability. We have synthesized stable tris(4-imidazolyl)carbinol derivatives having a methyl group as the NH protective group and a bulky substituent on the imidazole ring for stabilizing reactive species bound to the metal center. These ligands provide stable monomeric copper(I) complexes whose coordination environment are very close to the active site of metalloenzymes.  相似文献   

7.
《Journal of Coordination Chemistry》2012,65(16-18):2510-2525
Abstract

Two triply-bridged dinuclear copper(II) complexes of formula [LCu(μ-OH)(μ-OAc)(μ-X)CuL]X?0.5H2O where L is a bidentate ligand of N-(pyridine-2-ylmethyl)propane-2-amine and X=Cl, 1 and Br, 2 were synthesized and characterized by elemental analyses, spectroscopic techniques (IR, UV–Vis, EPR), thermal analysis, conductance measurements, and single-crystal X-ray structure determination. The structures of both complexes are similar. The complexes show a distorted square-pyramidal arrangement around each copper(II) ion with a CuN2O2X chromophore in which both copper(II) ions are connected by a hydroxo bridge and a triatomic syn-syn carboxylato bridge in equatorial positions and a halide ion bridge at the axial site. The chromotropism behavior of the complexes, including solvato-, thermo-, and halochromism, were investigated in detail. Their halochromism was investigated in the pH range of 2.0–11.0 by visible absorption spectroscopy. The reversible color variations from blue to colorless are attributable to deprotonation and protonation of the ligands. The complexes show reversible thermochromism in solution due to dissociation and recombination of ligands to copper ions.  相似文献   

8.
Co(II) complexes with 4,6-di(tert-butyl)-2-aminophenol (HLI) and 2-anilino-4,6-di(tert-butyl)phenol (HLII) have been synthesized and characterized by means of physico-chemical methods. The compounds HLI and HLII coordinate in their singly deprotonated forms and behave as bidentate O,N-coordinated ligands; their low-spin Co(II) complexes are characterized by CoN2O2 coordination modes and square planar geometry. Both the free ligands and their Co(II) and Cu(II) complexes (we have produced and characterized the latter before) exhibit a pronounced antifungal activity against Aspergillus niger, Fusarium spp., Mucor spp., Penicillium lividum, Botrytis cinerea, Alternaria alternata, Sclerotinia sclerotiorum, Monilia spp., which in a number of cases is comparable with that of Nystatin and Terbinafine or even higher. The reducing properties of the ligands and their metal(II) complexes, as well as their antifungal activities, were found to decrease in the order: Cu(LI)2 > Cu(LII)2 ? Co(LI)2 > Co(LII)2 > HLI > HLII.  相似文献   

9.
Cu (II) complexes with the sterically hindered diphenol derivatives 3,5-di(tert-butyl)-1,2-benzenediol (I), 4,6-di(tert-butyl)-1,2,3-benzenetriol (II) and the sulfur-containing 4,6-di(tert-butyl)-3-(2-hydroxyethylsulfanyl)-1,2-benzenediol (III) and 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfanyl]acetic acid (IV) have been synthesized and characterized by elemental analysis, TG/DTA, FT-IR, ESR, XPS, XPD and conductivity measurements. Compounds I–III can coordinate in their singly deprotonated forms and act as bidentate ligands. These compounds yield Cu (II) complexes of the stoichiometry Cu(L)2, which have square planar geometry (g| > g > ge). Unlike them, compound IV behaves as a terdentate ligand, and its complex Cu(LIV)2 has distorted octahedral geometry. According to ESR data, only the Cu(LII)2 complex contains a very small amount of phenoxyl radicals. Antimicrobial activities of these ligands and their respective Cu (II) complexes have been determined with respect to Gram-positive and Gram-negative bacteria, as well as on yeasts. Their phytotoxic properties against Chlorella vulgaris 157 were also examined.  相似文献   

10.
A set of four Cu(II) complexes, [Cu(cdnapen)], [Cu(cdnappd)], [Cu(cdMenappd)] and [Cu(cdMeMeOsalpd)], derived from Schiff base ligands with an asymmetric NN′OS coordination sphere have been synthesized. The molecular and the crystal structures have been determined by X-ray diffractometry. The structural results confirm that the complexes are tetra coordinated. The copper (II) ion coordinates to two nitrogen atoms from the imine moiety of the ligand, a sulfur atom from the methyl dithiocarboxylate moiety and a phenolic oxygen atom. The complexes show an unusual tetrahedral distortion to the square-planar geometry around the metal centre in spite of the pseudomacrocyclic skeleton of the ligand. The complexes were further characterized by cyclic voltammetry and electron paramagnetic resonance spectroscopy. The degree of tetrahedral distortion of the complexes appears to be dependent on the number of carbon atoms of the aliphatic bridge and the nature of the coordinating atoms.  相似文献   

11.
Four novel copper(Ⅱ) complexes have been synthesized,namely Cu(hfac)2NITPhNO2 (1),Cu(hfac)2NITPhCH3 (2),Cu(pfpr)2NITPhNO2,(3) and Cu(Pfpr)2NITPhCH3 (4),where hfac= hexafluoro-acetylacetonate,pfpr=pentafluoropropionate,NITR.=2-R-4,4,5,5-tetraniethyl-4,5-dihydro-1H-imidazolyl-1-oxyl-3-oxide.(R=4-nitrophenyl,4-methylphenyl).These complexes were rharicter-ized by elemental analyses,IR,electronic spectra and molar conductance.The temperature-dependent magnetic susceptibility of complexes 1 and 3 have been studied in the 4 300 K range,giving I he exchange integral J=10.56 cm-1 for complex 1 and J =-30.9 cm-1 for complex 3.  相似文献   

12.
Cobalt(II) and copper(II) complexes with three dioxime ligands cyclohexylamine-p-tolylglyoxime (L1H2), tert-butyl amine-p-tolylglioxime (L2H2) and sec-butylamine-p-tolylglyoxime (L3H2), have been prepared. The metal to ligand ratios of the complexes were found to be 1?:?2. The Cu(II) complexes of these ligands are proposed to be square planar; the Co(II) complexes are proposed to be octahedral with water molecules as axial ligands. Ligands and complexes are soluble in common solvents such as DMSO, DMF, CHCl3 and C2H5OH. The ligands have been characterized by elemental analysis, IR, UV-VIS, 1H?NMR, 13C?NMR and thermogravimetric analysis (TGA). The complexes were characterized by elemental analysis, IR, UV-VIS, magnetic susceptibility measurements, thermogravimetric analysis (TGA) and electrochemistry. Electrochemical properties of metal complexes show quasi-reversible one-electron redox processes. However, Co(L1H)2 and Cu(L1H)2 complexes show another oxidation peak in the positive region. This single irreversible oxidation peak is caused by the cyclic ring of the ligand. Data also revealed that the electron transfer rates of metal complexes with L1H2 are higher than the other complexes.  相似文献   

13.
The chelating behavior of some hydrazones towards Cu(II) has been investigated. The isolated complexes were characterized by elemental analysis, magnetic moment, spectra (electronic, IR and ms) and thermal measurements. The IR spectra showed that the ligands are deprotonated in the complexes as bidentate, tridentate and binegative tridentate. Protonation constants of the ligands and the stability constants of their Cu(II) complexes were calculated. Square-planar, square-pyramidal, tetrahedral and/or distorted octahedral structures are proposed. The TGA data help to confirm the chemical formula of the complexes and indicated the steps of their thermal degradations.  相似文献   

14.
We have synthesized two ditopic ligands for selective extraction of copper(II) nitrate. We also synthesized one cation-only binding analog for comparison. All three ligands were characterized by conventional techniques. Competitive two-phase metal ion solvent extraction experiments were performed at 25 °C over a period of 24 h. These ligands showed significant selectivity for Cu(II) ions, having the ditopic ligands extract 81 and 73% of the Cu(II) ions in a solution of different metal ions {Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Pb(II)} at pH 5.09. Competitive transport experiments (water/chloroform/water) were undertaken employing each ligand separately as the ionophore in the membrane (chloroform) phase. No metal ion transport was observed, but a large concentration of Cu(II) was present in the membrane phase. Competitive anion extraction and transport were carried out with the ditopic ligands, yielding selective extraction and transport of nitrate. Furthermore, a pH isotherm of the best ditopic ligand (H2L2) with Cu(II) was determined from pH 1.0 to 6.0, producing a pH½ value of approximately 2.6. Finally, crystal structures of the ditopic ligands complexed with Cu(II) were determined and refined. The coordination geometry around the metal centers are distorted square planar and the Cu(II)-donor bond lengths fall within the normal range.  相似文献   

15.
A new series of acyclic mononuclear copper(II) complexes have been prepared by Schiff-base condensation derived from 5-methylsalicylaldehyde, diethylenetriamine, tris(2-aminoethyl) amine, triethylenetetramine, N,N-bis(3-aminopropyl)ethylene diamine, N,N-bis(aminopropyl) piperazine, and copper perchlorate. All the complexes were characterized by elemental and spectral analyses. Electronic spectra of the complexes show a d–d transition in the range 500–800?nm, electrochemical studies of the complexes show irreversible one-electron-reduction process around ?1.10 to ?1.60?V. The reduction potential of the mononuclear copper(II) complexes shifts toward anodic direction upon increasing the chain length of the imine compartment. ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry, with nuclear hyperfine spin 3/2. The copper(II) complexes show a normal room temperature magnetic moment value μ eff?=?1.72–1.76?BM, close to the spin-only value of 1.73?BM. Electrochemical and catalytic studies of the complexes were compared on the basis of increasing the chain length of the imine compartment. All the complexes were screened for antifungal and antibacterial activities.  相似文献   

16.
Four new copper(II) complexes of the composition [Cu(H2L)(H2O)] have been synthesized by template method from reaction of copper(II) acetate, succinoyldihydrazine and some o-hydroxy aromatic aldehydes and ketones in aqueous methanol media. The composition of the complexes has been established on the basis of data obtained from analytical and mass spectral studies. The structure of the complexes has been discussed in the light of molar conductance, magnetic moment, Uv-vis, EPR and IR spectral studies. All of the complexes are non-electrolyte in DMSO. The μeff values for the complexes fall in the region 1.76–1.85 BM which rules out the possibility of any M–M interaction in the structural unit of the complexes. The ligands coordinate to the metal centre in enol form through phenolate/naphtholate oxygen atoms and azomethine nitrogen atoms. The NMR spectra show that ligands are present in anti-cis configuration in uncoordinated state. In all of the complexes the copper centre adopts square pyramidal stereochemistry. The unpaired electron is present in dx2-y2 orbital in the ground state for copper centre in the complexes. The electron transfer reactions for the complexes have been studied by cyclic voltammetry.  相似文献   

17.
Mononuclear complexes of 3-methylpyrazole with general formulas (3-Mepz)4CuCl2 (1), (3-Mepz)4CoCl2 (2), (3-Mepz)2PdCl2 (3), and (3-Mepz)2ZnCl2 (4) were prepared by reaction of the corresponding MCl2 salt (M?=?Cu, Co, Pd, and Zn) with 3-methylpyrazole in appropriate amounts using acetonitrile as solvent at ambient temperature. The X-ray crystal structure determination reveals that 1 and 2 possess octahedral geometry, while 3 and 4 are square planar and tetrahedral, respectively. All the synthesized compounds have the MCl2 fragment, thus making the synthesized compounds attractive synthons for further transformation. The cyclic voltammograms of the synthesized complexes were obtained and the voltammetric signatures of 1, 2, and 4 showed a single irreversible pH-dependent cathodic peak, while 3 has two reversible cathodic peaks. Involvement of protons accompanying the electron transfer processes was ascertained from differential pulse voltammetric results, indicating peak potential shift as a function of pH.  相似文献   

18.
Four platinum(II) complexes, [PtCl2L] (L = (4-fluorophenyl)pyridin-2-ylmethylene-amine, 1; (4-chlorophenyl)pyridin-2-ylmethyleneamine, 2; (4-bromophenyl)pyridin-2-ylmethyleneamine, 3 and (4-iodophenyl)pyridin-2-ylmethyleneamine, 4) have been synthesized and characterized by CHN analysis, IR and UV–Vis spectroscopy. The crystal structures of 1 and 2 were determined using single crystal X-ray diffraction. The coordination polyhedron about the platinum (II) center in the complexes is best described as distorted square planar. The complexes undergo stacking to form a zigzag Pt···Pt···Pt chain containing both short (3.57(7) Å in 1 and 3.62(8) Å in 2) and long (5.16(7) Å in 1 and 5.41(9) Å in 2) Pt···Pt separations through the crystal. The compounds absorb moderately in the visible region, owing to a charge-transfer-to-diimine electronic transition. The redox potentials are approximately insensitive to the substituents on the phenyl ring of the ligands.  相似文献   

19.
Three new copper(II) complexes [Cu(PSBP)2](NO3)(BF4) (1), [Cu(DAPBMA)2](BF4)2 (2), and [Cu(ImH)4(NO3)2] (3), where PSBP = 4-phenylsemicarbazide-2-benzoylpyridine, DAPBMA = 2,6-diacetylpyridine-bis-4-methoxyaniline, and ImH = Imidazole, have been synthesized and characterized by elemental analysis, FAB mass spectrometry, magnetic susceptibility, X-band electron paramagnetic resonance (EPR), electronic spectroscopy, and cyclic voltammetry. Frozen solution EPR spectra of the complexes have axial features with g > g > 2.003 suggesting the presence of a d x 2? y 2 ground state. Single crystal X-ray analyses of 13 reveal the presence of distorted octahedral geometry. All complexes exhibit significant superoxide dismutase activity.  相似文献   

20.
Two types of copper(II) and nickel(II) complexes derived from benzophenone anthranoylhydrazone (L1), 2-acetonaftanone anthranoylhydrazone (L2), 4-phenylacetonaftonone anthranoylhydrazone (L3), benzophenone salicyoylhydrazone (L4), 2-acetonaftanon salicyoylhydrazone (L5), 4-phenylacetonaftanon salicyoylhydrazone (L6) and bidentate heterocyclic base [1,10-phenanthroline (phen)] with general stoichiometry [ML2] and [ML(phen)]Cl have been synthesized and characterized by elemental analysis, infrared spectra, UV-vis electronic absorption spectra and magnetic susceptibility measurements. The effect of varying pH and solvent on the absorption behavior of both ligands and complexes have been investigated. According to the IR spectra, the ligands act as monobasic bidentate and coordination takes place in the enol tautomeric form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号