首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LetP κ,n (λ,β) be the class of functions \(g(z) = 1 + \sum\nolimits_{v = n}^\infty {c_\gamma z^v }\) , regular in ¦z¦<1 and satisfying the condition $$\int_0^{2\pi } {\left| {\operatorname{Re} \left[ {e^{i\lambda } g(z) - \beta \cos \lambda } \right]} \right|} /\left( {1 - \beta } \right)\cos \lambda \left| {d\theta \leqslant \kappa \pi ,} \right.z = re^{i\theta } ,$$ , 0 < r < 1 (κ?2,n?1, 0?Β<1, -π<λ<π/2;M κ,n (λ,β,α),n?2, is the class of functions \(f(z) = z + \sum\nolimits_{v = n}^\infty {a_v z^v }\) , regular in¦z¦<1 and such thatF α(z)∈P κ,n?1(λ,β), where \(F_\alpha (z) = (1 - \alpha )\frac{{zf'(z)}}{{f(z)}} + \alpha (1 + \frac{{zf'(z)}}{{f'(z)}})\) (0?α?1). Onr considers the problem regarding the range of the system {g (v?1)(z?)/(v?1)!}, ?=1,2,...,m,v=1,2,...,N ?, on the classP κ,1(λ,β). On the classesP κ,n (λ,β),M κ,n (λ,β,α) one finds the ranges of Cv, v?n, am, n?m?2n-2, and ofg(?),F ?(?), 0<¦ξ¦<1, ξ is fixed.  相似文献   

2.
Let ? be a non-constant function inL (D) such thatφ=φ 1+φ 2, whereφ 1 is an element in the Bergman spaceL a 2 (D), and \(\phi _2 \in \overline {L_a^2 (D)} \) , the space of all complex conjugates of functions inL a 2 (D). In this paper, it is shown that if 1 is an element in the closure of the range of the self-commutator ofT ?, \(T_{\bar \phi } T_\phi - T_\phi T\phi \) , then the Toeplitz operatorT ? defined ofL a 2 (D) is not quasinormal. Moreover, if \(\phi = \psi + \lambda \bar \psi \) , whereψ∈ H (D), and λεC, it is proved that ifT ? is quasinormal, thenT ? is normal. Also, the spectrum of a class of pure hyponormal Toeplitz operators is determined.  相似文献   

3.
We prove that for any open orientable surface S of finite topology, there exist a Riemann surface M, a relatively compact domain M ? M and a continuous map X: $\overline M $ → ?3 such that:
  • M and M are homeomorphic to S, M-M and M ? $\overline M $ contain no relatively compact components in M
  • X| M is a complete null holomorphic curve, $X{|_{\overline M - M}}:\overline M - M \to {{\Bbb C}^3}$ is an embedding and the Hausdorff dimension of X( $\overline M $ ?M) is 1.
Moreover, for any ε > 0 and compact null holomorphic curve Y:N→?3 with non-empty boundary Y (?N), there exist Riemann surfaces M and M homeomorphic to N and a map X: $\overline M $ → ?3 in the above conditions such that δ H (Y(?N),X( $\overline M $ ? M)) < ε, where δ H (·,·) means Hausdorff distance in ?3.  相似文献   

4.
LetL be the space of rapidly decreasing smooth functions on ? andL * its dual space. Let (L 2)+ and (L 2)? be the spaces of test Brownian functionals and generalized Brownian functionals, respectively, on the white noise spaceL * with standard Gaussian measure. The Donsker delta functionδ(B(t)?x) is in (L 2)? and admits the series representation $$\delta (B(t) - x) = (2\pi t)^{ - 1/2} \exp ( - x^2 /2t)\sum\limits_{n = 0}^\infty {(n!2^n )^{ - 1} H_n (x/\sqrt {2t} )} \times H_n (B(t)/\sqrt {2t} )$$ , whereH n is the Hermite polynomial of degreen. It is shown that forφ in (L 2)+,g t(x)≡〈δ(B(t)?x), φ〉 is inL and the linear map takingφ intog t is continuous from (L 2)+ intoL. This implies that forf inL * is a generalized Brownian functional and admits the series representation $$f(B(t)) = (2\pi t)^{ - 1/2} \sum\limits_{n = 0}^\infty {(n!2^n )^{ - 1} \langle f,\xi _{n, t} \rangle } H_n (B(t)/\sqrt {2t} )$$ , whereξ n,t is the Hermite function of degreen with parametert. This series representation is used to prove the Ito lemma forf inL *, $$f(B(t)) = f(B(u)) + \int_u^t {\partial _s^ * } f'(B(s)) ds + (1/2)\int_u^t {f''} (B(s)) ds$$ , where? s * is the adjoint of \(\dot B(s)\) -differentiation operator? s .  相似文献   

5.
It is proved that for all fractionall the integral \(\int\limits_0^\infty {(p,\ell ) - cap(M_t )} dt^p\) is majorized by the P-th power norm of the functionu in the space ? p l (Rn) (here Mt={x∶¦u(x)¦?t} and (p,l)-cap(e) is the (p,l)-capacity of the compactum e?Rn). Similar results are obtained for the spaces W p l (Rn) and the spaces of M. Riesz and Bessel potentials. One considers consequences regarding imbedding theorems of “fractional” spaces in ?q(dμ), whereμ is a nonnegative measure in Rn. One considers specially the case p=1.  相似文献   

6.
The linear complementarity problem (LCP) can be viewed as the problem of minimizingx T y subject toy=Mx+q andx, y?0. We are interested in finding a point withx T y <ε for a givenε > 0. The algorithm proceeds by iteratively reducing the potential function $$f(x,y) = \rho \ln x^T y - \Sigma \ln x_j y_j ,$$ where, for example,ρ=2n. The direction of movement in the original space can be viewed as follows. First, apply alinear scaling transformation to make the coordinates of the current point all equal to 1. Take a gradient step in the transformed space using the gradient of the transformed potential function, where the step size is either predetermined by the algorithm or decided by line search to minimize the value of the potential. Finally, map the point back to the original space. A bound on the worst-case performance of the algorithm depends on the parameterλ **(M, ε), which is defined as the minimum of the smallest eigenvalue of a matrix of the form $$(I + Y^{ - 1} MX)(I + M^T Y^{ - 2} MX)^{ - 1} (I + XM^T Y^{ - 1} )$$ whereX andY vary over the nonnegative diagonal matrices such thate T XYe ?ε andX jj Y jj?n 2. IfM is a P-matrix,λ * is positive and the algorithm solves the problem in polynomial time in terms of the input size, |log ε|, and 1/λ *. It is also shown that whenM is positive semi-definite, the choice ofρ = 2n+ \(\sqrt {2n} \) yields a polynomial-time algorithm. This covers the convex quadratic minimization problem.  相似文献   

7.
Для данного числаK, 1≦K≦∞, обозначимΩ(K) клас с последовательносте йφ={φ k (x)} стохастически незав исимых на (0,1) функций, дл я которых выполнены условия: $$\int\limits_0^1 {\varphi _k (x)dx = 0,} \int\limits_0^1 {\varphi _k^2 (x)dx = 1, |\varphi _k (x)|} \leqq K(x \in (0,1);k = 1,2, \ldots ).$$ Пусть, далее,λ={λ n } —по следовательность со свойствами $$0< \lambda _1< \ldots< \lambda _n< \ldots ,\mathop {\lim }\limits_{n \to \infty } \lambda _n = \infty ,$$ иМ (λ;K) — множество числ овых последовательн остейa={a k } k=1 , для которых по сле-довательности средних $$\frac{1}{{\lambda _n }}\mathop \sum \limits_{k = 1}^n a_k \varphi _k (x)(n = 1,2, \ldots )$$ сходятся к нулю почтя всюду на (0,1) для всех сис темφ∈Ω(K). В статье, в частности, п утем применения одно го метода Б. С. Кашина, доказываетс я, что для каждогоK, 1 <-K<∞, в ыполнено равенствоM(λ; K)=М(λ; 1).  相似文献   

8.
It is well known how the Kostant-Rowen Theorem extends the validity of the famous Amitsur-Levitzki identity to skew-symmetric matrices. Here we give a general method, based on a graph theoretic approach, for deriving extensions of known permanental-type identities to skew-symmetric and symmetric matrices over a commutative ring of prime characteristic. Our main result has a typical Kostant-Rowen flavour: IfM≥p[n+1/2] then $C_M (X,Y) = \sum\limits_{\alpha ,\beta \in Sym(M)} {x_{\alpha (1)} y_{\beta (1)} x_{\alpha (2)} y_{\beta (2)} } ...x_{\alpha (M)} y_{\beta (M)} = 0$ is an identity onM n ? (Ω), the set ofnxn skew-symmetric matrices over a commutative ring Ω withp1Ω=0 (provided that $P > \sqrt {[n + 1/2)} $ ). Otherwise, the stronger conditionM≥pn implies thatC M(X,Y)=0 is an identity on the full matrix ringM n(Ω).  相似文献   

9.
Three convolution-type equations are considered in the space of entire functions with topology ofd uniform convergence: $$\begin{gathered} M{_{\mu}{_1}} [f] \equiv \smallint _C f(z + t)d\mu _1 = 0, \hfill \\ M{_\mu{_1}} [f] \equiv \smallint _C f(z + t)d\mu _2 = 0, \hfill \\ M_\mu [f] \equiv \smallint _C f(z + t)d\mu = 0 \hfill \\ \end{gathered}$$ with respective characteristic functions L1(λ), L2(λ), L(λ)=L1(λ)· L2(λ), suppμ ?c, suppμ 1 ?c, suppμ 2 ?c. The necessary and sufficient conditions are found that every solutionf(z) of the equation Mμ[f[ can be written as a sumf 1(z) +f 2(z), wheref 1(z) is the solution of the equation \(M{_\mu{_1}} [f] = 0\) ,f 2(z) is the solution of the equation \(M{_\mu{_2}} [f] = 0\) .  相似文献   

10.
Let L(λ) be an entire function of exponential type, letγ(t) be the function associated with L(λ) in the sense of Borel, let \(\bar D\) be the smallest closed convex set containing all the singular points ofγ(t), let λ0, λ1, ..., λn, ... be the simple zeros of L(λ), and let A \(\bar D\) be the space of functions analytic on \(\bar D\) with the topology of the inductive limit. With an arbitraryf (z) ∈ A( \(\bar D\) ) we can associate the series whereC is a closed contour containing \(\bar D\) , on and inside of whichf (z) is analytic. We give a method of recoveringf (z) from the Dirichlet coefficientsa n.  相似文献   

11.
Пусть {λ n 1 t8 — монотонн ая последовательнос ть натуральных чисел. Дл я каждой функции fεL(0, 2π) с рядом Фурье строятся обобщенные средние Bалле Пуссена $$V_n^{(\lambda )} (f;x) = \frac{{a_0 }}{2} + \mathop \sum \limits_{k = 1}^n (a_k \cos kx + b_k \sin kx) + \mathop \sum \limits_{k = n + 1}^{n + \lambda _n } \left( {1 - \frac{{k - n}}{{\lambda _n + 1}}} \right)\left( {a_k \cos kx + b_k \sin kx} \right).$$ Доказываются следую щие теоремы.
  1. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность {Vn (λ)(?;x)} расходится почти вс юду.
  2. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность $$\left\{ {\frac{1}{\pi }\mathop \smallint \limits_{ - \pi /\lambda _n }^{\pi /\lambda _n } f(x + t)\frac{{\sin (n + \tfrac{1}{2})t}}{{2\sin \tfrac{1}{2}t}}dt} \right\}$$ расходится почти всю ду
.  相似文献   

12.
LetΩ ? ?2 be a smooth bounded simply connected domain. Consider the functional $$E_\varepsilon (u) = \frac{1}{2}\int\limits_\Omega {\left| {\nabla u} \right|^2 + \frac{1}{{4\varepsilon ^2 }}} \int\limits_\Omega {(|u|^2 - 1)^2 } $$ on the classH g 1 ={u εH 1(Ω; ?);u=g on ?Ω} whereg:?Ω? → ? is a prescribed smooth map with ¦g¦=1 on ?Ω? and deg(g, ?Ω)=0. Let uu ε be a minimizer for Eε onH g 1 . We prove that uε → u0 in \(C^{1,\alpha } (\bar \Omega )\) as ε → 0, where u0 is identified. Moreover \(\left\| {u_\varepsilon - u_0 } \right\|_{L^\infty } \leqslant C\varepsilon ^2 \) .  相似文献   

13.
Доказываются две тео ремы В которых для класса ортонормированных с истем типа сиг-нум устанавливаются те ж е свойства сходимост и, что и для класса всех ортонорм ированных систем. Теорема 1.Ряд Σс n φ п с з аданными коэффициен тами {с п тогда и талька то гда является безусловно сходящим ся почти всюду для все х ортонормированных с истем типасигнум (опр еделен-ных на (0,1)), когда выполнено у словие $$\mathop \sum \limits_{k = 0}^\infty \left[ {\mathop \sum \limits_{n = 2^{2^k } + 1}^{2^{2^{k + 1} } } (c_n^* )^2 \log ^2 n} \right]^{1/2}< \infty $$ , где с n * — невозрастающ ая перестановка последовательности { сn¦. Для класса равномерн о ограниченных ортонормированных с истем это утверждени е было установлено К. Тандор и [7]. Теорема 2.Если 0<λ 1λ 2≦ ... —последовательнос ть чисел, для которой Σλ n ?1 =∞,то существует такая орт онормированная сист ема типа сигнум {φ n } (определе нная на (0,1)), что почти всюду на (0,1) Для ортонормированн ых систем не типа сигн ум это утверждение было док азано в [6] (теорема X). Приведенные результ аты дают ответ на вопр осы, поставленные Тандор и ([6], [7]).  相似文献   

14.
Let $\mathcal{X}$ be a metric space with doubling measure and L a nonnegative self-adjoint operator in $L^{2}(\mathcal{X})$ satisfying the Davies–Gaffney estimates. Let $\varphi:\mathcal{X}\times[0,\infty)\to[0,\infty)$ be a function such that φ(x,?) is an Orlicz function, $\varphi(\cdot,t)\in\mathbb{A}_{\infty}(\mathcal{X})$ (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index I(φ)∈(0,1], and it satisfies the uniformly reverse Hölder inequality of order 2/[2?I(φ)]. In this paper, the authors introduce a Musielak–Orlicz–Hardy space $H_{\varphi,L}(\mathcal{X})$ , by the Lusin area function associated with the heat semigroup generated by L, and a Musielak–Orlicz BMO-type space $\mathrm{BMO}_{\varphi,L}(\mathcal{X})$ , which is further proved to be the dual space of $H_{\varphi,L}(\mathcal{X})$ and hence whose φ-Carleson measure characterization is deduced. Characterizations of $H_{\varphi,L}(\mathcal{X})$ , including the atom, the molecule, and the Lusin area function associated with the Poisson semigroup of L, are presented. Using the atomic characterization, the authors characterize $H_{\varphi,L}(\mathcal{X})$ in terms of the Littlewood–Paley $g^{\ast}_{\lambda}$ -function $g^{\ast}_{\lambda,L}$ and establish a Hörmander-type spectral multiplier theorem for L on $H_{\varphi,L}(\mathcal{X})$ . Moreover, for the Musielak–Orlicz–Hardy space H φ,L (? n ) associated with the Schrödinger operator L:=?Δ+V, where $0\le V\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{n})$ , the authors obtain its several equivalent characterizations in terms of the non-tangential maximal function, the radial maximal function, the atom, and the molecule; finally, the authors show that the Riesz transform ?L ?1/2 is bounded from H φ,L (? n ) to the Musielak–Orlicz space L φ (? n ) when i(φ)∈(0,1], and from H φ,L (? n ) to the Musielak–Orlicz–Hardy space H φ (? n ) when $i(\varphi)\in(\frac{n}{n+1},1]$ , where i(φ) denotes the uniformly critical lower type index of φ.  相似文献   

15.
Let χ(S r n?1 )) be the minimum number of colours needed to colour the points of a sphere S r n?1 of radius $r \geqslant \tfrac{1} {2}$ in ? n so that any two points at the distance 1 apart receive different colours. In 1981 P. Erd?s conjectured that χ(S r n?1 )→∞ for all $r \geqslant \tfrac{1} {2}$ . This conjecture was proved in 1983 by L. Lovász who showed in [11] that χ(S r n?1 ) ≥ n. In the same paper, Lovász claimed that if $r < \sqrt {\frac{n} {{2n + 2}}}$ , then χ(S r n?1 ) ≤ n+1, and he conjectured that χ(S r n?1 ) grows exponentially, provided $r \geqslant \sqrt {\frac{n} {{2n + 2}}}$ . In this paper, we show that Lovász’ claim is wrong and his conjecture is true: actually we prove that the quantity χ(S r n?1 ) grows exponentially for any $r > \tfrac{1} {2}$ .  相似文献   

16.
Let (M, g) be a closed connected orientable Riemannian manifold of dimension n????2. Let ??:?=??? 0?+??? * ?? denote a twisted symplectic form on T * M, where ${\sigma\in\Omega^{2}(M)}$ is a closed 2-form and ?? 0 is the canonical symplectic structure ${dp\wedge dq}$ on T * M. Suppose that ?? is weakly exact and its pullback to the universal cover ${\widetilde{M}}$ admits a bounded primitive. Let ${H:T^{*}M\rightarrow\mathbb{R}}$ be a Hamiltonian of the form ${(q,p)\mapsto\frac{1}{2}\left|p\right|^{2}+U(q)}$ for ${U\in C^{\infty}(M,\mathbb{R})}$ . Let ?? k :?=?H ?1(k), and suppose that k?>?c(g, ??, U), where c(g, ??, U) denotes the Ma?é critical value. In this paper we compute the Rabinowitz Floer homology of such hypersurfaces. Under the stronger condition that k?>?c 0(g, ??, U), where c 0(g, ??, U) denotes the strict Ma?é critical value, Abbondandolo and Schwarz (J Topol Anal 1:307?C405, 2009) recently computed the Rabinowitz Floer homology of such hypersurfaces, by means of a short exact sequence of chain complexes involving the Rabinowitz Floer chain complex and the Morse (co)chain complex associated to the free time action functional. We extend their results to the weaker case k?>?c(g, ??, U), thus covering cases where ?? is not exact. As a consequence, we deduce that the hypersurface ?? k is never (stably) displaceable for any k?>?c(g, ??, U). This removes the hypothesis of negative curvature in Cieliebak et?al. (Geom Topol 14:1765?C1870, 2010, Theorem 1.3) and thus answers a conjecture of Cieliebak, Frauenfelder and Paternain raised in Cieliebak et?al. (2010). Moreover, following Albers and Frauenfelder (2009; J Topol Anal 2:77?C98, 2010) we prove that for k?>?c(g, ??, U), any ${\psi\in\mbox{Ham}_{c}(T^{*}M,\omega)}$ has a leaf-wise intersection point in ?? k , and that if in addition ${\dim\, H_{*}(\Lambda M;\mathbb{Z}_{2})=\infty}$ , dim M????2, and the metric g is chosen generically, then for a generic ${\psi\in\mbox{Ham}_{c}(T^{*}M,\omega)}$ there exist infinitely many such leaf-wise intersection points.  相似文献   

17.
Every subfield $ \mathbb{K} $ (φ) of the field of rational fractions $ \mathbb{K} $ (x 1,..., x n ) is contained in a unique maximal subfield of the form $ \mathbb{K} $ (ω). The element ω is said to be generating for the element φ. A subfield of $ \mathbb{K} $ (x 1,..., x n ) is said to be saturated if, together with every its element, the subfield also contains the generating element. In the paper, the saturation property is studied for the subfields of invariants $ \mathbb{K} $ (x 1,..., x n ) G of a finite group G of automorphisms of the field $ \mathbb{K} $ (x 1..., x n ).  相似文献   

18.
In recent analyses [3, 4] the remarkable AGM continued fraction of Ramanujan—denoted ${\cal R}_1$ (a, b)—was proven to converge for almost all complex parameter pairs (a, b). It was conjectured that ${\cal R}_1$ diverges if and only if (0≠ a = be i φ with cos 2φ ≠ 1) or (a 2 = b 2? (?∞, 0)). In the present treatment we resolve this conjecture to the positive, thus establishing the precise convergence domain for ${\cal R}_1$ . This is accomplished by analyzing, using various special functions, the dynamics of sequences such as (t n ) satisfying a recurrence $$ t_n = (t_{n-1} + (n-1) \kappa_{n-1}t_{n-2})/n, $$ where κ n ? a 2, b 2 as n be even, odd respectively. As a byproduct, we are able to give, in some cases, exact expressions for the n-th convergent to the fraction ${\cal R}_1$ , thus establishing some precise convergence rates. It is of interest that this final resolution of convergence depends on rather intricate theorems for complex-matrix products, which theorems evidently being extensible to more general continued fractions.  相似文献   

19.
В работе доказываютс я следующие утвержде ния. Теорема I.Пусть ? n ↓0u \(\sum\limits_{n = 0}^\infty {\varepsilon _n^2 = + \infty } \) .Тогд а существует множест во Е?[0, 1]с μЕ=0 такое что:1. Существует ряд \(\sum\limits_{n = 0}^\infty {a_n W_n } (t)\) с к оеффициентами ¦а n ¦≦{in¦n¦, который сх одится к нулю всюду вне E и ε∥an∥>0.2. Если b n ¦=о(ε n )и ряд \(\sum\limits_{n = 0}^\infty {b_n W_n (t)} \) сх одится к нулю всюду вн е E за исключением быть может некоторого сче тного множества точе к, то b n =0для всех п. Теорема 3.Пусть ? n ↓0u \(\mathop {\lim \sup }\limits_{n \to \infty } \frac{{\varepsilon _n }}{{\varepsilon _{2n} }}< \sqrt 2 \) Тогд а существует множест во E?[0, 1] с υ E=0 такое, что:
  1. Существует ряд \(\sum\limits_{n = - \infty }^{ + \infty } {a_n e^{inx} ,} \sum\limits_{n = - \infty }^{ + \infty } {\left| {a_n } \right|} > 0,\) кот орый сходится к нулю в сюду вне E и ¦an≦¦n¦ для n=±1, ±2, ...
  2. Если ряд \(\sum\limits_{n = - \infty }^{ + \infty } {b_n e^{inx} } \) сходится к нулю всюду вне E и ¦bv¦=о(ε ¦n¦), то bn=0 для всех я. Теорема 5. Пусть послед овательности S(1)={ε 0 (1) , ε 1 (1) , ε 2 (1) , ...} u S2 0 (2) , ε 1 (2) . ε 2 (2) монотонно стремятся к нулю, \(\mathop {\lim \sup }\limits_{n \to \infty } \varepsilon ^{(i)} /\varepsilon _{2n}^{(i)}< 2,i = 1,2\) , причем \(\mathop {\lim }\limits_{n \to \infty } \varepsilon _n^{(2)} /\varepsilon _n^{(i)} = + \infty \) . Тогда для каждого ε>O н айдется множество Е? [-π,π], μE >2π — ε, которое является U(S1), но не U(S1) — множеством для тригонометричес кой системы. Аналог теоремы 5 для си стемы Уолша был устан овлен в [7].
  相似文献   

20.
Let g(x)?=?x n ?+?a n-1 x n-1?+?. . .?+?a 0 be an irreducible polynomial over ${\mathbb{F}_q}$ . Varshamov proved that for a?=?1 the composite polynomial g(x p ?ax?b) is irreducible over ${\mathbb{F}_q}$ if and only if ${{\rm Tr}_{\mathbb{F}_q/\mathbb{F}_p}(nb-a_{n-1})\neq 0}$ . In this paper, we explicitly determine the factorization of the composite polynomial for the case a?=?1 and ${{\rm Tr}_{\mathbb{F}_q/\mathbb{F}_p}(nb-a_{n-1})= 0}$ and for the case a?≠ 0, 1. A recursive construction of irreducible polynomials basing on this composition and a construction with the form ${g(x^{r^kp}-x^{r^k})}$ are also presented. Moreover, Cohen’s method of composing irreducible polynomials and linear fractions are considered, and we show a large number of irreducible polynomials can be obtained from a given irreducible polynomial of degree n provided that gcd(n, q 3 ? q)?=?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号