首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The partial molar volumes (V 2) for hexaamminecobalt(III) nitrate in proteated and deuterated water were determined at 0.00 (for H2O only), 5.00, 10.00, 15.00, and 20.00?°C. The increase of the solute??s partial molar volume with increasing concentration and the negative second derivative of the solute??s partial molar volume at infinite dilution with respect to temperature were interpreted in terms of the solvent structure breaking property of the solute. In addition, the difference at each temperature between the solute??s partial molar volume at infinite dilution for proteated and deuterated water was used to estimate the solvent coordination number at each temperature.  相似文献   

2.
Moisture absorption and diffusion behavior of an underfill material used for electronic packaging with a glass transition temperature (T g) slightly above room temperature have been investigated by the sorption thermogravimetric analysis technique. It has been found that moisture diffusion in this material follows the Fick’s diffusion model, and moisture absorption–desorption is reversible and repeatable. Based on moisture-induced mass gain versus time curve, the diffusion constant can be determined. It was found that below T g, moisture diffusivity exhibits an Arrhenius temperature dependence, which changes to a different Arrhenius temperature dependence as the temperature increases to T > T g. The change in diffusivity from T < T g to T > T g is accompanied by a significant decrease in the energy barrier for moisture diffusion. Results shed light on the change in moisture diffusion in polymer-based materials in the glassy and the rubbery state.  相似文献   

3.
The extraction kinetics of lanthanum(III), uranyl(VI), and thorium(IV) nitrates from water-salt solutions using a composite based on a polymeric support and tri-n-butyl phosphate (TBP) were studied at 293.15–333.15 K. Interfacial diffusion (the film kinetics) is the rate-controlling stage of extraction. Mass transfer coefficients were determined, and their temperature dependence was used to estimate apparent activation energies E a. The mass transfer coefficients increase in going from lanthanum(III), uranyl(VI), and thorium(IV) nitrate solutions to water-salt solutions containing 2 mol/L sodium nitrate or with rising temperature. E a is independent of the metal ion and the supporting electrolyte concentration; E a = 25 ± 1 kJ/mol. At a fixed temperature, the increasing order of the mass transfer coefficients is as follows: thorium(IV) < uranyl(VI) < lanthanum(III).  相似文献   

4.
The infinite dilution diffusion coefficients of n-hexane, n-heptane and n-decane in crosslinked silicone rubber with different crosslinking agent concentrations were measured in the temperature range of 348.15 K-368.15 K by inverse gas chromatography. The crosslinked silicone rubber was obtained by dissolving PDMS prepolymer, crosslinking agent and catalyst in n-heptane solvent and characterized by FTIR spectra. The Van Deemter equation was used to determine diffusion coefficients from the variation in chromatographic peak width with carrier gas flow rate. The good linear relation indicated the Van Deemter equation used in this work was reliable. The influences of small molecule solvent, crosslinking agent concentration and temperature on the infinite dilution diffusion coefficient were investigated. The results showed that the infinite dilution diffusion coefficient decreased with an increasing number of CH2 group in the alkane series. The increase in crosslinking agent concentration resulted in decrease of the infinite dilution diffusion coefficient. The infinite dilution diffusion coefficient increased with the rising of temperature. The interdependence on the infinite dilution diffusion coefficient and temperature accorded with Arrhenius equation well. Diffusion constant and activation energy obtained from the Arrhenius equation provided straight lines with the specific critical volume and crosslinking agent concentration.  相似文献   

5.
Single crystal X-ray and synchrotron X-ray powder diffraction have been used to probe the structure of Ba3NaIr2O9 from 300 K down to 20 K. Ba3NaIr2O9 is found to undergo a structural transition from hexagonal symmetry, P63/mmc, at ambient temperature to monoclinic symmetry, C2/c, at low temperature. The evolution of the unit cell volume upon cooling is indicative of a higher order structural transition, and the symmetry breaking becomes apparent as the temperature is decreased. The low temperature monoclinic structure of Ba3NaIr2O9 contains strongly distorted [NaO6] and [IrO6] octahedra in comparison to the room temperature hexagonal structure.  相似文献   

6.
In view of the susceptibility of TiB2 to oxidation, the thermal stability of monolithic TiB2 and of Al2O3-30 vol% TiB2 and Si3N4-20 vol% TiB2 composites was investigated. The temperature at which TiB2 ceramic starts to oxidize is about 400°C, oxidation kinetics being controlled by diffusion up toT≈900°C and in the first stage of the oxidation at 1000°C and 1100°C (up to 800 min and 500 min respectively), and by a linear law at higher temperatures and for longer periods. Weight gains in the Al2O3-TiB2 composite can be detected only at temperatures above ≈700°C and the rate governing step of the oxidation reaction is characterized by a one-dimensional diffusion mechanism atT=700°C andT=800°C and by two-dimensional diffusion at higher temperatures. Concerning the Si3N4-TiB2 composite, three different oxidation behaviours related to the temperature were observed, i.e. up to ≈1000°C the reaction detected regards only the second phase; at ≈1000<T<≈1200°C, the diffusion of O2 or N2 through an oxide layer is proposed as the rate-governing step; atT〉=1200°C, a linear kinetic indicates the formation of a non protective scale.  相似文献   

7.
Polyaniline titanotungstate has been synthesized by incorporation of organic polymer polyaniline into the inorganic precipitate of titanotungstate. This material was characterized using X-ray, IR and TGA studies. The influences of initial concentration of metal ions, particle size and temperature have been reported. The comparison of composite and inorganic materials was studied and indicating that the composite material is better than the inorganic in selectivity of Cs+ ions. Thermodynamic parameters, such as changes in Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) have been calculated. The numerical values of ΔG decrease with an increase in temperature, indicating that the sorption reaction of adsorbent was spontaneous and more favorable at higher temperature. The positive values of ΔH correspond to the endothermic nature of sorption processes and suggested that chemisorptions were the predominant mechanism. A comparison of kinetic models applied to the sorption rate data of Cs+ ions was evaluated for the pseudo first-order, the pseudo second-order, intraparticle diffusion and homogeneous particle diffusion kinetic models. The results showed that both the pseudo second-order and the homogeneous particle diffusion models were found to best correlate the experimental rate data. Self diffusion coefficient (Di), Activation energy (Ea) and entropy (ΔS*) of activation were also computed from the linearized form of Arrhenius equation.  相似文献   

8.
Exsolution is an ingenious strategy for the in situ construction of metal- or alloy-decorated oxides and, due to its promising energy related catalysis applications, has advanced from use in perovskites to use in spinels. Despite its great importance for designing target composites, the ability to identify whether active metal ions at octahedral or tetrahedral sites will preferentially exsolve in a spinel remains unexplored. Here, an inverse spinel NiFe2O4 (NFO) was employed as a prototype and FeNi/NFO composites were successfully constructed via exsolution. The preferential breaking of octahedral metal–oxygen bonds in the spinel oxide was directly observed using Mössbauer and X-ray absorption spectroscopy. This was further verified from the negative segregation energies calculated based on density-functional theory. One exsolved FeNi/NFO composite exhibits enhanced electrochemical activity with an overpotential of 283 mV at 10 mA cm−2 and a long stability time for the oxygen evolution reaction. This work offers a unique insight into spinel exsolution based on the preferential breaking of chemical bonds and may be an effective guide for the design of new composite catalysts where the desired metal ions are deliberately introduced to octahedral and/or tetrahedral sites.

The preferential breaking of octahedral metal–oxygen bonds is exploited to construct an exsolved FeNi/NFO composite for an efficient oxygen evolution reaction.  相似文献   

9.
The use of single molecules to study local, nanoscale polymer dynamics is presented. Fluorescence lifetime fluctuations were used to extract the number of polymer segments (Ns) taking part in the rearranging volume around the probe molecule below the glass transition temperature. Ns was dependent on the temperature and it decreased with increasing temperature. Above the glass transition, rotational motion of single molecules was followed in time and typical time-scales of the rotational diffusion were extracted. These two approaches allowed us to obtain non-averaged information about the heterogeneous dynamics present in polymer systems, on the nanoscale, above and below glass transition temperatures.  相似文献   

10.
The viscosities of Sr(NO3)2 and Cd(NO3)2 have been determined in dioxane, glycol and methyl alcohol+water mixtures at 10, 20 and 30% by weight. The B values have been computed at different temperatures both from the Jones—Dole and Das's equation. From the B values, the effective rigid molar volume, its change with % of organic solvent, temperature and the ion—solvent interaction have been inferred. Activation parameters have also been calculated and the structure breaking effect has been deduced.  相似文献   

11.
The utilization of epoxy shape memory polymer composite (SMPCs) as engineering materials for deployable structures has attracted considerable attention in recent decades due to high strength and satisfactory stiffness in comparison with shape memory polymers (SMPs). Knowledge of static and dynamic mechanical properties is essential for analyzing structural behavior and recovery properties, especially for new epoxy SMPCs. In this paper, a new weave reinforced epoxy shape memory polymer composite was prepared with satin weave technique and resin transfer molding technique. Uniaxial tensile tests and dynamic mechanical analysis were carried out to obtain basic mechanical properties and glass transition temperatures, respectively.The tensile strength and breaking elongation of warp specimens were comparable with those of weft specimens. The increment of elastic modulus and hysteresis loop areas became smaller with loading cycles, meaning that cyclic tests could obtain approximate stable mechanical properties. For dynamic mechanical properties, glass transition temperature (Tg) obtained from storage modulus curves was lower than that determined from tan delta curves and Tgs in the warp and weft directions were similar (29.4 °C vs 29.7 °C). Moreover, the storage modulus in response to Tg was two orders of magnitude less than that with respect to low temperature, which demonstrated the easy processibility of epoxy SMPCs near glass transition temperature. In general, this study could provide useful observations and basic mechanical properties of new epoxy SMPCs.  相似文献   

12.
Three types of novel correlations for activation energies of gas permeation EP and diffusion ED in amorphous glassy polymers are considered and their application for prediction of the EP and ED values for different gases are examined. The first one is based on application of the group contribution method. Combined consideration of the equation of free volume and Arrhenius equation results in the correlation of EP and ED with free volume Vf and fractional free volume (FFV). At last, the correlations between EP and the permeability coefficient at a certain reference temperature P(Tref), as well as ED versus D(Tref), are based on the fulfilment of the so-called compensation effect between activation energies and preexponential factors in activated processes. Examples of applicability of the correlations considered and recommendations for their use in prediction of the EP and ED values are given for transport of various gases in glassy polymers and separately in amorphous glassy polyimides.  相似文献   

13.
The electrical conductivity of polymer/multi-walled carbon nanotubes (MWCNTs) composites in a powder and in a hot-pressed compacted state, prepared by mechanical mixing, was studied. The semicrystalline ultrahigh molecular weight polyethylene (UHMWPE) was used as a polymer matrix. The data clearly evidence the presence of a percolation threshold φc at a very small volume fraction of the MWCNTs φ in a polymer matrix, φc ≈ 0.0004-0.0007. The ultralow percolation threshold in UHMWPE/MWCNTs thermoplastic composites was explained by high aspect ratio of the nanotubes and their segregated distribution inside the polymer matrix. The method of composite preparation effects the values of percolation threshold concentration φc and critical exponent t. A noticeable positive temperature coefficient of resistivity (PTC effect) was observed in the region of temperatures higher than melting point. It was explained by influence of thermal expansion of the polymer matrix and independence from the melting process that is a result of specific structure of conductive phase.  相似文献   

14.
Self-diffusion coefficients of oxygen in a spinel solid solution system, MgAl2−xFexO4, have been measured by a gas-solid isotope-exchange technique using18O as a tracer. Mo¨ssbauer spectra of the same spinel solid solution have been studied over the temperature range where the materials were paramagnetic. The line broadening characteristic of Mo¨ssbauer spectra of these materials was interpreted in terms of distribution of the electric field gradient at57Fe nuclei. Debye temperatures were calculated from the temperature dependence of the absorption intensity of their Mo¨ssbauer spectra. The compositional dependence of the Debye temperature from the Mo¨ssbauer effect followed that of the activation energy of diffusion. A linear relationship between the activation energy and the square of the Debye temperature exists.  相似文献   

15.
16.
A simple uniform-pressure diffusion apparatus has been used to measure the diffusivities of the gaseous fluorocarbons CF4 and CF2Cl2 in air at atmospheric pressure and room temperature (293 K). The diffusion coefficients are found to be D(CF4—air) = 0.121 cm2s?1 and D(CF2Cl2—air) = 0.098 cm2s?1. The observed diffusion flux ratios are in agreement with Graham's diffusion law.  相似文献   

17.
《中国化学快报》2021,32(10):3175-3179
In this work, nitric oxide absorption process by using ferrate(VI)/urea was proposed. The respective influences of the four factors including pH value, ferrate(VI) concentration, urea concentration, and the temperature and the interactive function of them on nitric oxide absorption were investigated with the response surface methodology (RSM) by central composite design (CCD). The proposed model system showed good consistency with the experiment results, by a correlated coefficient (R2) of 0.9875. In addition, the interactive influences between any two variables were elaborated through analysis of response surface. The optimal parameters were found at pH of 7.1, reaction temperature of 43.8 °C, urea concentration of 6.3 wt%, ferrate(VI) concentration of 4.4 mmol/L for 85.2% NO absorption. Finally, N-containing product analysis shows that nitric oxide was primarily transformed to N2 and NO3.  相似文献   

18.
Polystyrene template microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. These template particles dispersed in aqueous solution have been used for the entrapment of ferrocene by a swelling process of methylene chloride emulsion droplets containing ferrocene within these particles, followed by evaporation of methylene chloride. The effects of CH2Cl2 volume and the [CH2Cl2]/[FeC10H10] (w/w) ratio on the size and size distribution of the swollen template particles were elucidated. Air-stable Fe3C nanoparticles embedded in amorphous carbon matrix (Fe3C/C) have been prepared by thermal decomposition of the ferrocene-swollen template polystyrene particles at 500 °C for 2 h in a sealed cell. Decomposition of these swollen template particles for 2 h at higher temperatures led to the formation of carbon nanotubes (CNTs) in addition to the Fe3C/C composite nanoparticles. The yield of the CNTs increased as the annealing temperature was raised. An opposite behavior was observed for the diameter of the formed CNTs. The size and size distribution, crystallinity, and magnetic properties of the different Fe3C/C composite nanoparticles have also been controlled by the annealing temperature.  相似文献   

19.
Structural collapse of plant materials, which affects quality of foods, was studied. Fresh and osmotically dehydrated plant materials were freeze-dried at several chamber pressures, to achieve initial sample temperatures that were below (?55?C), near (?45?C), or above (?28?C) their glass transition temperature (T g=?45?C). Freeze-drying at ?55?C resulted in products retaining their original volume. When the initial sample temperature was increased aboveT g, the resulting freeze-dried samples collapsed. When the initial sample temperature was increased above the temperature of ice melting (Tm), the samples collapsed further.  相似文献   

20.
Conversion of methane into liquid alcohol such as ethanol at low temperature in a straight, selective and low energy consumption process remains a topic of intense scientific research but a great challenge. In this work, Cu Fe2O4/CNT composite is successfully synthesized via a facile co-reduction method and used as catalysts to selectively oxidize methane. At a low temperature of 150 °C, methane is directly converted to ethanol in a single process on the as-prepared CuFe  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号