首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LetK be a quadratic number field with discriminantD and denote byF(n) the number of integral ideals with norm equal ton. Forr≥1 the following formula is proved $$\sum\limits_{n \leqslant x} {F(n)F(n + r) = M_K (r)x + E_K (x,r).} $$ HereM k (r) is an explicitly determined function ofr which depends onK, and for every ε>0 the error term is bounded by \(|E_K (x,r)|<< |D|^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2} + \varepsilon } x^{{5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-0em} 6} + \varepsilon } \) uniformly for \(r<< |D|^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} x^{{5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-0em} 6}} \) Moreover,E k (x,r) is small on average, i.e \(\int_X^{2X} {|E_K (x,r)|^2 dx}<< |D|^{4 + \varepsilon } X^{{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2} + \varepsilon } \) uniformly for \(r<< |D|X^{{3 \mathord{\left/ {\vphantom {3 4}} \right. \kern-0em} 4}} \) .  相似文献   

2.
Let $\mathcal{T}_{n}$ be the semigroup of all full transformations on the finite set X n ={1,2,…,n}. For 1≤rn, set $\mathcal {T}(n, r)=\{ \alpha\in\mathcal{T}_{n} | \operatorname{rank}(\alpha)\leq r\}$ . In this note we show that, for 2≤rn?2, any maximal regular subsemigroup of the semigroup $\mathcal{T} (n,r)$ is idempotent generated, but this may not happen in the semigroup $\mathcal{T}(n, n-1)$ .  相似文献   

3.
For anyx ∈ r put $$c(x) = \overline {\mathop {\lim }\limits_{t \to \infty } } \mathop {\min }\limits_{(p,q\mathop {) \in Z}\limits_{q \leqslant t} \times N} t\left| {qx - p} \right|.$$ . Let [x0; x1,..., xn, ...] be an expansion of x into a continued fraction and let \(M = \{ x \in J,\overline {\mathop {\lim }\limits_{n \to \infty } } x_n< \infty \}\) .ForxM put D(x)=c(x)/(1?c(x)). The structure of the set \(\mathfrak{D} = \{ D(x),x \in M\}\) is studied. It is shown that $$\mathfrak{D} \cap (3 + \sqrt 3 ,(5 + 3\sqrt 3 )/2) = \{ D(x^{(n,3} )\} _{n = 0}^\infty \nearrow (5 + 3\sqrt 3 )/2,$$ where \(x^{(n,3)} = [\overline {3;(1,2)_n ,1} ].\) This yields for \(\mu = \inf \{ z,\mathfrak{D} \supset (z, + \infty )\}\) (“origin of the ray”) the following lower bound: μ?(5+3√3)/2=5.0n>(5 + 3/3)/2=5.098.... Suppose a∈n. Put \(M(a) = \{ x \in M,\overline {\mathop {\lim }\limits_{n \to \infty } } x_n = a\}\) , \(\mathfrak{D}(a) = \{ D(x),x \in M(a)\}\) . The smallest limit point of \(\mathfrak{D}(a)(a \geqslant 2)\) is found. The structure of (a) is studied completely up to the smallest limit point and elucidated to the right of it.  相似文献   

4.
Пусть Tn(f)={L1(f), ..., Ln(f)} — набор линейных функционал ов, заданных на простран стве \(C_{(r - 1)} (\parallel f\parallel _{C_{(r - 1)} } = \mathop {\max }\limits_{0 \leqq i \leqq r - 1} \parallel f^{(i)} \parallel _C );A_{n,r}\) — множество всех так их наборов функцио налов; С2n, 2 — множество всех н аборов из 2n функциона лов вида $$T_{2n} (f) = \{ f(x_1 ), \ldots ,f(x_n ),f'(x_1 ), \ldots ,f'(x_n )\}$$ и s: Еn→Е1. Доказано, что е слиW r множество всех 2π-периодических функ цийfεW∞0, 2πr, то приr=1,2,3,... ирε(1, ∞) и $$\begin{gathered} \mathop {\inf }\limits_{T_{2n} \in A_{2n,r} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \varphi _{n,r} \parallel _p \hfill \\ \mathop {\inf }\limits_{T_{2n} \in C_{2n,2} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \parallel \varphi _{n,r} \parallel _\infty - \varphi _{n,r} \parallel _p , \hfill \\ \end{gathered}$$ где ?n,rr-й периодичес кий интеграл, в средне м равный нулю на периоде, от фун кции ?n, 0t=sign sinnt. При этом указан ы оптимальные методы приближенного вычис ления.  相似文献   

5.
Some estimates for simultaneous polynomial approximation of a function and its derivatives are obtained. These estimates are exact in a certain sense. In particular, the following result is derived as a corollary: Forf∈C r[?1,1],mN, and anyn≥max{m+r?1, 2r+1}, an algebraic polynomialP n of degree ≤n exists that satisfies $$\left| {f^{\left( k \right)} \left( x \right) - P_n^{\left( k \right)} \left( {f,x} \right)} \right| \leqslant C\left( {r,m} \right)\Gamma _{nrmk} \left( x \right)^{r - k} \omega ^m \left( {f^{\left( r \right)} ,\Gamma _{nrmk} \left( x \right)} \right),$$ for 0≤k≤r andx ∈ [?1,1], where ωυ(f(k),δ) denotes the usual vth modulus of smoothness off (k), and Moreover, for no 0≤k≤r can (1?x 2)( r?k+1)/(r?k+m)(1/n2)(m?1)/(r?k+m) be replaced by (1-x2)αkn2αk-2, with αk>(r-k+a)/(r-k+m).  相似文献   

6.
An identity of the form x 1?x n ??x 1?? x 2?? ?x n?? where ?? is a non-trivial permutation on the set {1,??,n} is called a permutation identity. If u??v is a permutation identity, then ?(u??v) [respectively r(u??v)] is the maximal length of the common prefix [suffix] of the words u and v. A variety that satisfies a permutation identity is called permutative. If $\mathcal{V}$ is a permutative variety, then $\ell=\ell(\mathcal{V})$ [respectively $r=r(\mathcal{V})$ ] is the least ? [respectively r] such that $\mathcal{V}$ satisfies a permutation identity ?? with ?(??)=? [respectively r(??)=r]. A?variety that consists of nil-semigroups is called a nil-variety. If ?? is a set of identities, then $\operatorname {var}\varSigma$ denotes the variety of semigroups defined by ??. If $\mathcal{V}$ is a variety, then $L (\mathcal{V})$ denotes the lattice of all subvarieties of $\mathcal{V}$ . For ?,r??0 and n>1 let $\mathfrak{B}_{\ell,r,n}$ denote the set that consists of n! identities of the form $$t_1\cdots t_\ell x_1x_2 \cdots x_n z_{1}\cdots z_{r}\approx t_1\cdots t_\ell x_{1\pi}x_{2\pi} \cdots x_{n\pi}z_{1}\cdots z_{r}, $$ where ?? is a permutation on the set {1,??,n}. We prove that for each permutative nil-variety $\mathcal{V}$ and each $\ell\ge\ell(\mathcal{V})$ and $r\ge r(\mathcal{V})$ there exists n>1 such that $\mathcal{V}$ is definable by a first-order formula in $L(\operatorname{var}{\mathfrak{B}}_{l,r,n})$ if ???r or $\mathcal{V}$ is definable up to duality in $L(\operatorname{var}{\mathfrak{B}}_{\ell,r,n})$ if ?=r.  相似文献   

7.
LetH r be anr-uniform hypergraph. Letg=g(n;H r ) be the minimal integer so that anyr-uniform hypergraph onn vertices and more thang edges contains a subgraph isomorphic toH r . Lete =f(n;H r ,εn) denote the minimal integer such that everyr-uniform hypergraph onn vertices with more thane edges and with no independent set ofεn vertices contains a subgraph isomorphic toH r . We show that ifr>2 andH r is e.g. a complete graph then $$\mathop {\lim }\limits_{\varepsilon \to 0} \mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} f(n;H^r ,\varepsilon n) = \mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} g(n;H^r )$$ while for someH r with \(\mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} g(n;H^r ) \ne 0\) $$\mathop {\lim }\limits_{\varepsilon \to 0} \mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} f(n;H^r ,\varepsilon n) = 0$$ . This is in strong contrast with the situation in caser=2. Some other theorems and many unsolved problems are stated.  相似文献   

8.
In this paper we are concerned with the classification of the subsets A of ${\mathbb{Z}_p}$ which occur as images ${f(\mathbb{Z}_p^r)}$ of polynomial functions ${f:\mathbb{Z}_p^r\to \mathbb{Z}_p}$ , limiting ourselves to compact-open subsets (i.e. finite unions of open balls). We shall prove three main results: (i) Every compact-open ${A\subset \mathbb{Z}_p}$ is of the shape ${A=f(\mathbb{Z}_p^r)}$ for suitable r and ${f\in\mathbb{Z}_p[X_1,\ldots ,X_r]}$ . (ii) For each r 0 there is a compact-open A such that in (i) we cannot take r < r 0. (iii) For any compact-open set ${A\subset \mathbb{Z}_p}$ there exists a polynomial ${f\in\mathbb{Q}_p[X]}$ such that ${f(\mathbb{Z}_p)=A}$ . We shall also discuss in more detail which sets A can be represented as ${f(\mathbb{Z}_p)}$ for a polynomial ${f\in\mathbb{Z}_p[X]}$ in a single variable.  相似文献   

9.
Suppose f∈Hp(Tn), 0 r δ , δ=n/p?(n+1)/2. In this paper we eastablish the following inequality $$\mathop {\sup }\limits_{R > 1} \left\{ {\frac{1}{{\log R}}\int_1^R {\left\| {\sigma _r^\delta } \right\|_{H^p (T^R )}^p \frac{{dr}}{r}} } \right\}^{1/p} \leqslant C_{R,p} \left\| f \right\|_{H^p (T^R )} $$ It implies that $$\mathop {\lim }\limits_{R \to \infty } \frac{1}{{\log R}}\int_1^R {\left\| {\sigma _r^\delta - f} \right\|_{H^p (T^R )}^p \frac{{dr}}{r}} = 0$$ Moreover we obtain the same conclusion when p=1 and n=1.  相似文献   

10.
Let q, r ≥ 2 be integers, and denote by s q the sum-of-digits function in base q. In 1978, K.B. Stolarsky conjectured that $$\lim_{N \to \infty} \frac{1}{N} \sum_{n \leq N} \frac{s_2(n^r)}{s_2(n)} \leq r.$$ In this paper we prove this conjecture. We show that for polynomials ${P_1(X), P_2(X) \in \mathbb{Z}[X]}$ of degrees r 1, r 2 ≥ 1 and integers q 1, q 2 ≥ 2, we have $$\lim_{N \to \infty} \frac{1}{N} \sum_{n \leq N}\frac{s_{q_1}(P_1(n))}{s_{q_2}(P_2(n))} = \frac{r_1 (q_1 - 1) {\rm log}q_2}{r_2(q_2 - 1) {\rm log} q_1}.$$ We also present a variant of the problem to polynomial values of prime numbers.  相似文献   

11.
Let Y n denote the Gromov-Hausdorff limit $M^{n}_{i}\stackrel{d_{\mathrm{GH}}}{\longrightarrow} Y^{n}$ of v-noncollapsed Riemannian manifolds with ${\mathrm{Ric}}_{M^{n}_{i}}\geq-(n-1)$ . The singular set $\mathcal {S}\subset Y$ has a stratification $\mathcal {S}^{0}\subset \mathcal {S}^{1}\subset\cdots\subset \mathcal {S}$ , where $y\in \mathcal {S}^{k}$ if no tangent cone at y splits off a factor ? k+1 isometrically. Here, we define for all η>0, 0<r≤1, the k-th effective singular stratum $\mathcal {S}^{k}_{\eta,r}$ satisfying $\bigcup_{\eta}\bigcap_{r} \,\mathcal {S}^{k}_{\eta,r}= \mathcal {S}^{k}$ . Sharpening the known Hausdorff dimension bound $\dim\, \mathcal {S}^{k}\leq k$ , we prove that for all y, the volume of the r-tubular neighborhood of $\mathcal {S}^{k}_{\eta,r}$ satisfies ${\mathrm {Vol}}(T_{r}(\mathcal {S}^{k}_{\eta,r})\cap B_{\frac{1}{2}}(y))\leq c(n,{\mathrm {v}},\eta)r^{n-k-\eta}$ . The proof involves a quantitative differentiation argument. This result has applications to Einstein manifolds. Let $\mathcal {B}_{r}$ denote the set of points at which the C 2-harmonic radius is ≤r. If also the $M^{n}_{i}$ are Kähler-Einstein with L 2 curvature bound, $\| Rm\|_{L_{2}}\leq C$ , then ${\mathrm {Vol}}( \mathcal {B}_{r}\cap B_{\frac{1}{2}}(y))\leq c(n,{\mathrm {v}},C)r^{4}$ for all y. In the Kähler-Einstein case, without assuming any integral curvature bound on the $M^{n}_{i}$ , we obtain a slightly weaker volume bound on $\mathcal {B}_{r}$ which yields an a priori L p curvature bound for all p<2. The methodology developed in this paper is new and is applicable in many other contexts. These include harmonic maps, minimal hypersurfaces, mean curvature flow and critical sets of solutions to elliptic equations.  相似文献   

12.
We consider the generalized Gagliardo-Nirenberg inequality in $\Bbb{R}^{n}$ including homogeneous Besov space $\dot{B}^{s}_{r,\rho}(\Bbb{R}^{n})$ with the critical order s=n/r, which describes the continuous embedding such as $L^{p}(\Bbb{R}^{n})\cap\dot{B}^{n/r}_{r,\rho}(\Bbb{R}^{n})\subset L^{q}(\Bbb{R}^{n})$ for all q with p q<∞, where 1 p r<∞ and 1<ρ ∞. Indeed, the following inequality holds: $$\|u\|_{L^{q}(\Bbb{R}^{n})}\leqq C\,q^{1-1/\rho}\|u\|_{L^{p}(\Bbb{R}^{n})}^{p/q}\|u\|_{\dot{B}^{n/r}_{r,\rho}(\Bbb{R}^{n})}^{1-p/q},$$ where C is a constant depending only on r. In this inequality, we have the exact order 1?1/ρ of divergence to the power q tending to the infinity. Furthermore, as a corollary of this inequality, we obtain the Gagliardo-Nirenberg inequality with the homogeneous Triebel-Lizorkin space $\dot{F}^{n/r}_{r,\rho}(\Bbb{R}^{n})$ , which implies the usual Sobolev imbedding with the critical Sobolev space $\dot{H}^{n/r}_{r}(\Bbb{R}^{n})$ . Moreover, as another corollary, we shall prove the Trudinger-Moser type inequality in $\dot{B}^{n/r}_{r,\rho}(\Bbb{R}^{n})$ .  相似文献   

13.
If m ∈ ?, ? m is the additive group of the modulo m residue classes, $\mathcal{A} \subset \mathbb{Z}_m$ and n ∈ ?, ? m , then let $R\left( {\mathcal{A},n} \right)$ denote the number of solutions of a+a′ = n with $a,a' \in \mathcal{A}$ . The variation $V(\mathcal{A}) = \mathop {\max }\limits_{n \in \mathbb{Z}_m } |R(\mathcal{A},n + 1) - R(\mathcal{A},n)|$ is estimated in terms of the number of a’s with $a - 1 \notin \mathcal{A}$ , $a \in \mathcal{A}$ .  相似文献   

14.
Fix integers nr ≥ 2. A clique partition of ${{[n] \choose r}}$ is a collection of proper subsets ${A_1, A_2, \ldots, A_t \subset [n]}$ such that ${\bigcup_i{A_i \choose r}}$ is a partition of ${{[n]\choose r}}$ . Let cp(n, r) denote the minimum size of a clique partition of ${{[n] \choose r}}$ . A classical theorem of de Bruijn and Erd?s states that cp(n, 2) =?n. In this paper we study cp(n, r), and show in general that for each fixed r ≥ 3, $${\rm cp}(n, r) \geq (1 + o(1))n^{r/2} \quad \quad {\rm as} \, \, n \rightarrow \infty.$$ We conjecture cp(n, r) =?(1 +?o(1))n r/2. This conjecture has already been verified (in a very strong sense) for r = 3 by Hartman–Mullin–Stinson. We give further evidence of this conjecture by constructing, for each r ≥ 4, a family of (1?+?o(1))n r/2 subsets of [n] with the following property: no two r-sets of [n] are covered more than once and all but o(n r ) of the r-sets of [n] are covered. We also give an absolute lower bound ${{\rm cp}(n, r) \geq {n \choose r}/{q + r - 1 \choose r}}$ when n =?q 2 + q +?r ? 1, and for each r characterize the finitely many configurations achieving equality with the lower bound. Finally we note the connection of cp(n, r) to extremal graph theory, and determine some new asymptotically sharp bounds for the Zarankiewicz problem.  相似文献   

15.
We consider simple polytopes \(P = vc^k \left( {\Delta ^{n_1 } \times \ldots \times \Delta ^{n_r } } \right)\) for n 1 ≥ … ≥ n r ≥ 1, r ≥ 1, and k ≥ 0, that is, k-vertex cuts of a product of simplices, and call them generalized truncation polytopes. For these polytopes we describe the cohomology ring of the corresponding moment-angle manifold \(\mathcal{Z}_P\) and explore some topological consequences of this calculation. We also examine minimal non-Golodness for their Stanley-Reisner rings and relate it to the property of \(\mathcal{Z}_P\) being a connected sum of sphere products.  相似文献   

16.
Let fC[?1, 1]. Let the approximation rate of Lagrange interpolation polynomial of f based on the nodes $ \left\{ {\cos \frac{{2k - 1}} {{2n}}\pi } \right\} \cup \{ - 1,1\} $ be Δ n + 2(f, x). In this paper we study the estimate of Δ n + 2(f,x), that keeps the interpolation property. As a result we prove that $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left| {T_n (x)} \right|\ln (n + 1) + \omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}\left| {T_n (x)} \right|} \right)} \right\}, $$ where T n (x) = cos (n arccos x) is the Chebeyshev polynomial of first kind. Also, if fC r [?1, 1] with r ≧ 1, then $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\frac{{\sqrt {1 - x^2 } }} {{n^r }}\left| {T_n (x)} \right|\omega \left( {f^{(r)} ,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left( {\left( {\sqrt {1 - x^2 } + \frac{1} {n}} \right)^{r - 1} \ln (n + 1) + 1} \right)} \right\}. $$   相似文献   

17.
J.M. Howie proved that $\operatorname {Sing}_{n}$ , the semigroup of all singular mappings of {1,…,n} into itself, is generated by its idempotents of defect 1 (in J. London Math. Soc. 41, 707–716, 1966). He also proved that if n≥3 then a minimal generating set for $\operatorname {Sing}_{n}$ contains n(n?1)/2 transformations of defect 1 (in Gomes and Howie, Math. Proc. Camb. Philos. Soc. 101. 395–403, 1987). In this paper we find necessary and sufficient conditions for any set for transformations of defect 1 in $\operatorname {Sing}_{n}$ to be a (minimal) generating set for $\operatorname {Sing}_{n}$ .  相似文献   

18.
Let (Ω, ?,P) be the infinite product of identical copies of the unit interval probability space. For a Lebesgue measurable subsetI of the unit interval, let \(A(N,I,\omega ) = \# \left\{ {n \leqslant N|\omega _n \varepsilon I} \right\}\) , where ω=(ω12,...). For integersm>1, and 0≤r<m, define $$\varepsilon (k,r,m,I,\omega ) = \left\{ {\begin{array}{*{20}c} {1\,if\,A(k,I,\omega ) \equiv r(\bmod m)} \\ {0\,otherwise} \\ \end{array} } \right.$$ and $$\eta (k,m,I,\omega ) = \left\{ {\begin{array}{*{20}c} {1\,if\,(A(k,I,\omega ),m) \equiv 1} \\ {0\,otherwise.} \\ \end{array} } \right.$$ A theorem ofK. L. Chung yields an iterated logarithm law and a central limit theorem for sums of the variables ε(k) and η(k).  相似文献   

19.
We prove that $$\mathop {L_n \in Z_n }\limits^{\inf } \mathop \omega \limits^{sup^* } \mathop {f \in H_\omega }\limits^{\sup } \frac{{\left\| {f - L_n \left( f \right)} \right\|}}{{\omega \left( {\frac{\pi }{{n + 1}}} \right)}} = 1\left( {n = 0,1,2,...} \right)$$ (n=0,1,2,...), where \(\mathop {L_n \in Z_n }\limits^{\inf } \) is taken over all linear polynomial approximation methods of degree not higher than n and \(\mathop \omega \limits^{sup^* } \) over all convex moduli of continuity ω(δ).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号